| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsnprmd.g | ⊢ ( 𝜑  →  1  <  𝐴 ) | 
						
							| 2 |  | dvdsnprmd.l | ⊢ ( 𝜑  →  𝐴  <  𝑁 ) | 
						
							| 3 |  | dvdsnprmd.d | ⊢ ( 𝜑  →  𝐴  ∥  𝑁 ) | 
						
							| 4 |  | dvdszrcl | ⊢ ( 𝐴  ∥  𝑁  →  ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 5 |  | divides | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐴  ∥  𝑁  ↔  ∃ 𝑘  ∈  ℤ ( 𝑘  ·  𝐴 )  =  𝑁 ) ) | 
						
							| 6 | 3 4 5 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∥  𝑁  ↔  ∃ 𝑘  ∈  ℤ ( 𝑘  ·  𝐴 )  =  𝑁 ) ) | 
						
							| 7 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  2  ∈  ℤ ) | 
						
							| 9 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝐴  <  𝑁 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  𝐴  <  𝑁 ) | 
						
							| 12 |  | breq2 | ⊢ ( ( 𝑘  ·  𝐴 )  =  𝑁  →  ( 𝐴  <  ( 𝑘  ·  𝐴 )  ↔  𝐴  <  𝑁 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( 𝐴  <  ( 𝑘  ·  𝐴 )  ↔  𝐴  <  𝑁 ) ) | 
						
							| 14 | 11 13 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  𝐴  <  ( 𝑘  ·  𝐴 ) ) | 
						
							| 15 |  | zre | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℝ ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴  ∧  𝑘  ∈  ℤ )  →  𝐴  ∈  ℝ ) | 
						
							| 17 |  | zre | ⊢ ( 𝑘  ∈  ℤ  →  𝑘  ∈  ℝ ) | 
						
							| 18 | 17 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴  ∧  𝑘  ∈  ℤ )  →  𝑘  ∈  ℝ ) | 
						
							| 19 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 20 |  | 0red | ⊢ ( 𝐴  ∈  ℤ  →  0  ∈  ℝ ) | 
						
							| 21 |  | 1red | ⊢ ( 𝐴  ∈  ℤ  →  1  ∈  ℝ ) | 
						
							| 22 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 23 | 20 21 15 22 | syl3anc | ⊢ ( 𝐴  ∈  ℤ  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 24 | 19 23 | mpani | ⊢ ( 𝐴  ∈  ℤ  →  ( 1  <  𝐴  →  0  <  𝐴 ) ) | 
						
							| 25 | 24 | imp | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  0  <  𝐴 ) | 
						
							| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴  ∧  𝑘  ∈  ℤ )  →  0  <  𝐴 ) | 
						
							| 27 | 16 18 26 | 3jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴  ∧  𝑘  ∈  ℤ )  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 28 | 27 | 3exp | ⊢ ( 𝐴  ∈  ℤ  →  ( 1  <  𝐴  →  ( 𝑘  ∈  ℤ  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  <  𝐴  →  ( 𝑘  ∈  ℤ  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) ) ) | 
						
							| 30 | 3 4 29 | 3syl | ⊢ ( 𝜑  →  ( 1  <  𝐴  →  ( 𝑘  ∈  ℤ  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) ) ) | 
						
							| 31 | 1 30 | mpd | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℤ  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 34 |  | ltmulgt12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ  ∧  0  <  𝐴 )  →  ( 1  <  𝑘  ↔  𝐴  <  ( 𝑘  ·  𝐴 ) ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( 1  <  𝑘  ↔  𝐴  <  ( 𝑘  ·  𝐴 ) ) ) | 
						
							| 36 | 14 35 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  1  <  𝑘 ) | 
						
							| 37 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 38 | 37 | breq1i | ⊢ ( 2  ≤  𝑘  ↔  ( 1  +  1 )  ≤  𝑘 ) | 
						
							| 39 |  | 1zzd | ⊢ ( 𝑘  ∈  ℤ  →  1  ∈  ℤ ) | 
						
							| 40 |  | zltp1le | ⊢ ( ( 1  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 1  <  𝑘  ↔  ( 1  +  1 )  ≤  𝑘 ) ) | 
						
							| 41 | 39 40 | mpancom | ⊢ ( 𝑘  ∈  ℤ  →  ( 1  <  𝑘  ↔  ( 1  +  1 )  ≤  𝑘 ) ) | 
						
							| 42 | 41 | bicomd | ⊢ ( 𝑘  ∈  ℤ  →  ( ( 1  +  1 )  ≤  𝑘  ↔  1  <  𝑘 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  ( ( 1  +  1 )  ≤  𝑘  ↔  1  <  𝑘 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( ( 1  +  1 )  ≤  𝑘  ↔  1  <  𝑘 ) ) | 
						
							| 45 | 38 44 | bitrid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( 2  ≤  𝑘  ↔  1  <  𝑘 ) ) | 
						
							| 46 | 36 45 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  2  ≤  𝑘 ) | 
						
							| 47 |  | eluz2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝑘  ∈  ℤ  ∧  2  ≤  𝑘 ) ) | 
						
							| 48 | 8 9 46 47 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 49 | 7 | a1i | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  2  ∈  ℤ ) | 
						
							| 50 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 51 |  | 1zzd | ⊢ ( 𝐴  ∈  ℤ  →  1  ∈  ℤ ) | 
						
							| 52 |  | zltp1le | ⊢ ( ( 1  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( 1  <  𝐴  ↔  ( 1  +  1 )  ≤  𝐴 ) ) | 
						
							| 53 | 51 52 | mpancom | ⊢ ( 𝐴  ∈  ℤ  →  ( 1  <  𝐴  ↔  ( 1  +  1 )  ≤  𝐴 ) ) | 
						
							| 54 | 53 | biimpa | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  ( 1  +  1 )  ≤  𝐴 ) | 
						
							| 55 | 37 | breq1i | ⊢ ( 2  ≤  𝐴  ↔  ( 1  +  1 )  ≤  𝐴 ) | 
						
							| 56 | 54 55 | sylibr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  2  ≤  𝐴 ) | 
						
							| 57 | 49 50 56 | 3jca | ⊢ ( ( 𝐴  ∈  ℤ  ∧  1  <  𝐴 )  →  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) | 
						
							| 58 | 57 | ex | ⊢ ( 𝐴  ∈  ℤ  →  ( 1  <  𝐴  →  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 1  <  𝐴  →  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) ) | 
						
							| 60 | 3 4 59 | 3syl | ⊢ ( 𝜑  →  ( 1  <  𝐴  →  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) ) | 
						
							| 61 | 1 60 | mpd | ⊢ ( 𝜑  →  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) | 
						
							| 62 |  | eluz2 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝐴  ∈  ℤ  ∧  2  ≤  𝐴 ) ) | 
						
							| 63 | 61 62 | sylibr | ⊢ ( 𝜑  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℤ )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  𝐴  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 66 |  | nprm | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 ) )  →  ¬  ( 𝑘  ·  𝐴 )  ∈  ℙ ) | 
						
							| 67 | 48 65 66 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ¬  ( 𝑘  ·  𝐴 )  ∈  ℙ ) | 
						
							| 68 |  | eleq1 | ⊢ ( ( 𝑘  ·  𝐴 )  =  𝑁  →  ( ( 𝑘  ·  𝐴 )  ∈  ℙ  ↔  𝑁  ∈  ℙ ) ) | 
						
							| 69 | 68 | notbid | ⊢ ( ( 𝑘  ·  𝐴 )  =  𝑁  →  ( ¬  ( 𝑘  ·  𝐴 )  ∈  ℙ  ↔  ¬  𝑁  ∈  ℙ ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ( ¬  ( 𝑘  ·  𝐴 )  ∈  ℙ  ↔  ¬  𝑁  ∈  ℙ ) ) | 
						
							| 71 | 67 70 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ℤ )  ∧  ( 𝑘  ·  𝐴 )  =  𝑁 )  →  ¬  𝑁  ∈  ℙ ) | 
						
							| 72 | 71 | rexlimdva2 | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  ℤ ( 𝑘  ·  𝐴 )  =  𝑁  →  ¬  𝑁  ∈  ℙ ) ) | 
						
							| 73 | 6 72 | sylbid | ⊢ ( 𝜑  →  ( 𝐴  ∥  𝑁  →  ¬  𝑁  ∈  ℙ ) ) | 
						
							| 74 | 3 73 | mpd | ⊢ ( 𝜑  →  ¬  𝑁  ∈  ℙ ) |