Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsppwf1o.f |
⊢ 𝐹 = ( 𝑛 ∈ ( 0 ... 𝐴 ) ↦ ( 𝑃 ↑ 𝑛 ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑃 ↑ 𝑛 ) → ( 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
3 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
5 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝑛 ∈ ℕ0 ) |
6 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ ) |
8 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
9 |
8
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑃 ∈ ℤ ) |
10 |
5
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑛 ∈ ℕ0 ) |
11 |
|
elfzuz3 |
⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
13 |
|
dvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
14 |
9 10 12 13
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
15 |
2 7 14
|
elrabd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 ↑ 𝑛 ) ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) |
16 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
17 |
|
elrabi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑚 ∈ ℕ ) |
18 |
|
pccl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ) |
19 |
16 17 18
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ) |
20 |
16
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑃 ∈ ℙ ) |
21 |
17
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∈ ℕ ) |
22 |
21
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∈ ℤ ) |
23 |
8
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑃 ∈ ℤ ) |
24 |
|
simplr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝐴 ∈ ℕ0 ) |
25 |
|
zexpcl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
27 |
|
breq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) ↔ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
28 |
27
|
elrab |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ↔ ( 𝑚 ∈ ℕ ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
29 |
28
|
simprbi |
⊢ ( 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } → 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) |
31 |
|
pcdvdstr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑚 ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) → ( 𝑃 pCnt 𝑚 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
32 |
20 22 26 30 31
|
syl13anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
33 |
|
pcidlem |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |
35 |
32 34
|
breqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) |
36 |
|
fznn0 |
⊢ ( 𝐴 ∈ ℕ0 → ( ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ∧ ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) ) ) |
37 |
24 36
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ↔ ( ( 𝑃 pCnt 𝑚 ) ∈ ℕ0 ∧ ( 𝑃 pCnt 𝑚 ) ≤ 𝐴 ) ) ) |
38 |
19 35 37
|
mpbir2and |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( 𝑃 pCnt 𝑚 ) ∈ ( 0 ... 𝐴 ) ) |
39 |
|
oveq2 |
⊢ ( 𝑛 = 𝐴 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝐴 ) ) |
40 |
39
|
breq2d |
⊢ ( 𝑛 = 𝐴 → ( 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
41 |
40
|
rspcev |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑚 ∥ ( 𝑃 ↑ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ) |
42 |
24 30 41
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ) |
43 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑚 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) |
44 |
16 17 43
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → ( ∃ 𝑛 ∈ ℕ0 𝑚 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) |
45 |
42 44
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) → 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) |
46 |
45
|
adantrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) |
47 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) |
48 |
47
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → ( 𝑚 = ( 𝑃 ↑ 𝑛 ) ↔ 𝑚 = ( 𝑃 ↑ ( 𝑃 pCnt 𝑚 ) ) ) ) |
49 |
46 48
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) → 𝑚 = ( 𝑃 ↑ 𝑛 ) ) ) |
50 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 0 ... 𝐴 ) → 𝑛 ∈ ℤ ) |
51 |
|
pcid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑛 ∈ ℤ ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) = 𝑛 ) |
52 |
16 50 51
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) = 𝑛 ) |
53 |
52
|
eqcomd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ 𝑛 ∈ ( 0 ... 𝐴 ) ) → 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) |
54 |
53
|
adantrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) |
55 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → ( 𝑃 pCnt 𝑚 ) = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) ↔ 𝑛 = ( 𝑃 pCnt ( 𝑃 ↑ 𝑛 ) ) ) ) |
57 |
54 56
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑚 = ( 𝑃 ↑ 𝑛 ) → 𝑛 = ( 𝑃 pCnt 𝑚 ) ) ) |
58 |
49 57
|
impbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) ∧ ( 𝑛 ∈ ( 0 ... 𝐴 ) ∧ 𝑚 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) ) → ( 𝑛 = ( 𝑃 pCnt 𝑚 ) ↔ 𝑚 = ( 𝑃 ↑ 𝑛 ) ) ) |
59 |
1 15 38 58
|
f1o2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐹 : ( 0 ... 𝐴 ) –1-1-onto→ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ ( 𝑃 ↑ 𝐴 ) } ) |