| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isprm2 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ) ) |
| 2 |
|
breq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∥ 𝑃 ↔ 𝑀 ∥ 𝑃 ) ) |
| 3 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 = 1 ↔ 𝑀 = 1 ) ) |
| 4 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 = 𝑃 ↔ 𝑀 = 𝑃 ) ) |
| 5 |
3 4
|
orbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ↔ ( 𝑀 = 1 ∨ 𝑀 = 𝑃 ) ) ) |
| 6 |
|
orcom |
⊢ ( ( 𝑀 = 1 ∨ 𝑀 = 𝑃 ) ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 8 |
2 7
|
imbi12d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ↔ ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) ) |
| 9 |
8
|
rspccva |
⊢ ( ( ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 10 |
9
|
adantll |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑚 ∈ ℕ ( 𝑚 ∥ 𝑃 → ( 𝑚 = 1 ∨ 𝑚 = 𝑃 ) ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 11 |
1 10
|
sylanb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 → ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |
| 12 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 13 |
|
iddvds |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∥ 𝑃 ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∥ 𝑃 ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ 𝑃 ) |
| 16 |
|
breq1 |
⊢ ( 𝑀 = 𝑃 → ( 𝑀 ∥ 𝑃 ↔ 𝑃 ∥ 𝑃 ) ) |
| 17 |
15 16
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 = 𝑃 → 𝑀 ∥ 𝑃 ) ) |
| 18 |
|
1dvds |
⊢ ( 𝑃 ∈ ℤ → 1 ∥ 𝑃 ) |
| 19 |
12 18
|
syl |
⊢ ( 𝑃 ∈ ℙ → 1 ∥ 𝑃 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → 1 ∥ 𝑃 ) |
| 21 |
|
breq1 |
⊢ ( 𝑀 = 1 → ( 𝑀 ∥ 𝑃 ↔ 1 ∥ 𝑃 ) ) |
| 22 |
20 21
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 = 1 → 𝑀 ∥ 𝑃 ) ) |
| 23 |
17 22
|
jaod |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) → 𝑀 ∥ 𝑃 ) ) |
| 24 |
11 23
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ 𝑃 ↔ ( 𝑀 = 𝑃 ∨ 𝑀 = 1 ) ) ) |