| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑁  →  ( 𝑧  ∥  𝑃  ↔  𝑁  ∥  𝑃 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  𝑁  →  ( 𝑧  =  𝑃  ↔  𝑁  =  𝑃 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							imbi12d | 
							⊢ ( 𝑧  =  𝑁  →  ( ( 𝑧  ∥  𝑃  →  𝑧  =  𝑃 )  ↔  ( 𝑁  ∥  𝑃  →  𝑁  =  𝑃 ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							rspcv | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ∀ 𝑧  ∈  ( ℤ≥ ‘ 2 ) ( 𝑧  ∥  𝑃  →  𝑧  =  𝑃 )  →  ( 𝑁  ∥  𝑃  →  𝑁  =  𝑃 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							isprm4 | 
							⊢ ( 𝑃  ∈  ℙ  ↔  ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  ∀ 𝑧  ∈  ( ℤ≥ ‘ 2 ) ( 𝑧  ∥  𝑃  →  𝑧  =  𝑃 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simprbi | 
							⊢ ( 𝑃  ∈  ℙ  →  ∀ 𝑧  ∈  ( ℤ≥ ‘ 2 ) ( 𝑧  ∥  𝑃  →  𝑧  =  𝑃 ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							impel | 
							⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( 𝑁  ∥  𝑃  →  𝑁  =  𝑃 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eluzelz | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℤ )  | 
						
						
							| 9 | 
							
								
							 | 
							iddvds | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∥  𝑁 )  | 
						
						
							| 10 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑁  =  𝑃  →  ( 𝑁  ∥  𝑁  ↔  𝑁  ∥  𝑃 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl5ibcom | 
							⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  =  𝑃  →  𝑁  ∥  𝑃 ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑁  =  𝑃  →  𝑁  ∥  𝑃 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( 𝑁  =  𝑃  →  𝑁  ∥  𝑃 ) )  | 
						
						
							| 14 | 
							
								7 13
							 | 
							impbid | 
							⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑃  ∈  ℙ )  →  ( 𝑁  ∥  𝑃  ↔  𝑁  =  𝑃 ) )  |