Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑧 = 𝑁 → ( 𝑧 ∥ 𝑃 ↔ 𝑁 ∥ 𝑃 ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑁 → ( 𝑧 = 𝑃 ↔ 𝑁 = 𝑃 ) ) |
3 |
1 2
|
imbi12d |
⊢ ( 𝑧 = 𝑁 → ( ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ↔ ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) ) |
4 |
3
|
rspcv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) → ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) ) |
5 |
|
isprm4 |
⊢ ( 𝑃 ∈ ℙ ↔ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑃 ∈ ℙ → ∀ 𝑧 ∈ ( ℤ≥ ‘ 2 ) ( 𝑧 ∥ 𝑃 → 𝑧 = 𝑃 ) ) |
7 |
4 6
|
impel |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∥ 𝑃 → 𝑁 = 𝑃 ) ) |
8 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → 𝑁 ∈ ℤ ) |
9 |
|
iddvds |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 𝑁 ) |
10 |
|
breq2 |
⊢ ( 𝑁 = 𝑃 → ( 𝑁 ∥ 𝑁 ↔ 𝑁 ∥ 𝑃 ) ) |
11 |
9 10
|
syl5ibcom |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
12 |
8 11
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 = 𝑃 → 𝑁 ∥ 𝑃 ) ) |
14 |
7 13
|
impbid |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 ∥ 𝑃 ↔ 𝑁 = 𝑃 ) ) |