| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℕ ) | 
						
							| 3 | 1 2 | pccld | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑃  pCnt  𝐴 )  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 6 | 5 | eqeq2d | ⊢ ( 𝑛  =  ( 𝑃  pCnt  𝐴 )  →  ( 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑛  =  ( 𝑃  pCnt  𝐴 ) )  →  ( 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 10 | 9 | breq2d | ⊢ ( 𝑛  =  𝑁  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  ∧  𝑛  =  𝑁 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) ) | 
						
							| 13 | 8 11 12 | rspcedvd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 14 |  | pcprmpw2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ( ∃ 𝑛  ∈  ℕ0 𝐴  ∥  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 17 | 13 16 | mpbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  𝐴  =  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 18 | 4 7 17 | rspcedvd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) |