Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
2 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℕ ) |
3 |
1 2
|
pccld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
5 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
6 |
5
|
eqeq2d |
⊢ ( 𝑛 = ( 𝑃 pCnt 𝐴 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 = ( 𝑃 pCnt 𝐴 ) ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
9 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑁 ) ) |
10 |
9
|
breq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 = 𝑁 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) |
13 |
8 11 12
|
rspcedvd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ) |
14 |
|
pcprmpw2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 ∥ ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
17 |
13 16
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝐴 = ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) |
18 |
4 7 17
|
rspcedvd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |