Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsprmpweq |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
2 |
1
|
imp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
3 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
4 |
3
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
6 |
|
nn0re |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℝ ) |
7 |
5 6
|
anim12ci |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
8 |
7
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ) |
9 |
|
lelttric |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) ) |
10 |
8 9
|
syl |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) ) |
11 |
|
breq1 |
⊢ ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ) ) |
13 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
14 |
13
|
nnnn0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ0 ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℕ0 ) |
17 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
18 |
16 17
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℕ0 ) |
19 |
18
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ∈ ℤ ) |
20 |
13
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℂ ) |
23 |
13
|
nnne0d |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ≠ 0 ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ≠ 0 ) |
26 |
|
nn0z |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℤ ) |
28 |
22 25 27
|
expne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑛 ) ≠ 0 ) |
29 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
31 |
16 30
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℕ0 ) |
32 |
31
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) |
33 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑃 ↑ 𝑛 ) ≠ 0 ∧ ( 𝑃 ↑ 𝑁 ) ∈ ℤ ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ) ) |
34 |
19 28 32 33
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) ↔ ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ) ) |
35 |
20 23
|
jca |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ) |
37 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
38 |
37
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
39 |
38 26
|
anim12i |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
40 |
|
expsub |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ) |
41 |
40
|
eqcomd |
⊢ ( ( ( 𝑃 ∈ ℂ ∧ 𝑃 ≠ 0 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) → ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) = ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ) |
42 |
36 39 41
|
syl2an2r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) = ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ) |
43 |
42
|
eleq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ ↔ ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ ) ) |
44 |
22
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 𝑃 ∈ ℂ ) |
45 |
|
nn0cn |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) |
46 |
45
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
47 |
46
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
48 |
|
nn0cn |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℂ ) |
50 |
47 49
|
subcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 − 𝑛 ) ∈ ℂ ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑁 − 𝑛 ) ∈ ℂ ) |
52 |
46 48
|
anim12i |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) ) |
54 |
|
negsubdi2 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) ) |
55 |
53 54
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) ) |
56 |
29
|
anim1ci |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
57 |
|
ltsubnn0 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) ) |
58 |
56 57
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) ) |
59 |
58
|
imp |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑛 − 𝑁 ) ∈ ℕ0 ) |
60 |
55 59
|
eqeltrd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → - ( 𝑁 − 𝑛 ) ∈ ℕ0 ) |
61 |
|
expneg2 |
⊢ ( ( 𝑃 ∈ ℂ ∧ ( 𝑁 − 𝑛 ) ∈ ℂ ∧ - ( 𝑁 − 𝑛 ) ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) |
62 |
44 51 60 61
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) = ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) |
63 |
62
|
eleq1d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ ↔ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) ) |
64 |
13
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
65 |
64
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
67 |
66
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 𝑃 ∈ ℝ ) |
68 |
67 59
|
reexpcld |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ) |
69 |
|
znnsub |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑁 < 𝑛 ↔ ( 𝑛 − 𝑁 ) ∈ ℕ ) ) |
70 |
39 69
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 ↔ ( 𝑛 − 𝑁 ) ∈ ℕ ) ) |
71 |
70
|
biimpa |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( 𝑛 − 𝑁 ) ∈ ℕ ) |
72 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
73 |
72
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 1 < 𝑃 ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → 1 < 𝑃 ) |
75 |
74
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 1 < 𝑃 ) |
76 |
|
expgt1 |
⊢ ( ( 𝑃 ∈ ℝ ∧ ( 𝑛 − 𝑁 ) ∈ ℕ ∧ 1 < 𝑃 ) → 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) |
77 |
67 71 75 76
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) |
78 |
68 77
|
jca |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) |
79 |
|
oveq2 |
⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) = ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) |
80 |
79
|
eleq1d |
⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ↔ ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ) ) |
81 |
79
|
breq2d |
⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ↔ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) |
82 |
80 81
|
anbi12d |
⊢ ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ↔ ( ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ ( 𝑛 − 𝑁 ) ) ) ) ) |
83 |
78 82
|
syl5ibrcom |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( - ( 𝑁 − 𝑛 ) = ( 𝑛 − 𝑁 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) ) |
84 |
55 83
|
mpd |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ) |
85 |
|
recnz |
⊢ ( ( ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ∈ ℝ ∧ 1 < ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) → ¬ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) |
86 |
84 85
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ¬ ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ ) |
87 |
86
|
pm2.21d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 1 / ( 𝑃 ↑ - ( 𝑁 − 𝑛 ) ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) |
88 |
63 87
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑁 < 𝑛 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) |
89 |
88
|
ex |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 < 𝑛 → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → 𝑛 ≤ 𝑁 ) ) ) |
90 |
89
|
com23 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 𝑁 − 𝑛 ) ) ∈ ℤ → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
91 |
43 90
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( ( 𝑃 ↑ 𝑁 ) / ( 𝑃 ↑ 𝑛 ) ) ∈ ℤ → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
92 |
34 91
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
93 |
92
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
94 |
12 93
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) |
95 |
94
|
ex |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) |
96 |
95
|
com23 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) |
97 |
96
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) ) |
98 |
97
|
com23 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ( 𝑛 ∈ ℕ0 → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) ) ) ) |
99 |
98
|
imp41 |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑁 < 𝑛 → 𝑛 ≤ 𝑁 ) ) |
100 |
99
|
com12 |
⊢ ( 𝑁 < 𝑛 → ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) ) |
101 |
100
|
jao1i |
⊢ ( ( 𝑛 ≤ 𝑁 ∨ 𝑁 < 𝑛 ) → ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) ) |
102 |
10 101
|
mpcom |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝑛 ≤ 𝑁 ) |
103 |
|
simpr |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
104 |
102 103
|
jca |
⊢ ( ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
105 |
104
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
106 |
105
|
reximdva |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
107 |
2 106
|
mpd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
108 |
107
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 ( 𝑛 ≤ 𝑁 ∧ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |