Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
2 |
|
dvdsprmpweq |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
3 |
1 2
|
syl3an2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
4 |
3
|
imp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
5 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
6 |
5
|
rexeqi |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ( ℕ ∪ { 0 } ) 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
7 |
|
rexun |
⊢ ( ∃ 𝑛 ∈ ( ℕ ∪ { 0 } ) 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
9 |
|
0z |
⊢ 0 ∈ ℤ |
10 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 0 ) ) |
11 |
10
|
eqeq2d |
⊢ ( 𝑛 = 0 → ( 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) ) |
12 |
11
|
rexsng |
⊢ ( 0 ∈ ℤ → ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) ) |
13 |
9 12
|
ax-mp |
⊢ ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ↔ 𝐴 = ( 𝑃 ↑ 0 ) ) |
14 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
15 |
14
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
16 |
15
|
exp0d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 ↑ 0 ) = 1 ) |
18 |
17
|
eqeq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 0 ) ↔ 𝐴 = 1 ) ) |
19 |
|
eluz2b3 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝐴 ∈ ℕ ∧ 𝐴 ≠ 1 ) ) |
20 |
|
eqneqall |
⊢ ( 𝐴 = 1 → ( 𝐴 ≠ 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
21 |
20
|
com12 |
⊢ ( 𝐴 ≠ 1 → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
22 |
19 21
|
simplbiim |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
23 |
22
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = 1 → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
24 |
18 23
|
sylbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 = ( 𝑃 ↑ 0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
25 |
24
|
com12 |
⊢ ( 𝐴 = ( 𝑃 ↑ 0 ) → ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) ) |
26 |
25
|
impd |
⊢ ( 𝐴 = ( 𝑃 ↑ 0 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
27 |
13 26
|
sylbi |
⊢ ( ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
28 |
27
|
jao1i |
⊢ ( ( ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ∨ ∃ 𝑛 ∈ { 0 } 𝐴 = ( 𝑃 ↑ 𝑛 ) ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
29 |
8 28
|
sylbi |
⊢ ( ∃ 𝑛 ∈ ℕ0 𝐴 = ( 𝑃 ↑ 𝑛 ) → ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |
30 |
4 29
|
mpcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) |
31 |
30
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ∥ ( 𝑃 ↑ 𝑁 ) → ∃ 𝑛 ∈ ℕ 𝐴 = ( 𝑃 ↑ 𝑛 ) ) ) |