| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2nn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | dvdsprmpweq | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℕ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 3 | 1 2 | syl3an2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 5 |  | df-n0 | ⊢ ℕ0  =  ( ℕ  ∪  { 0 } ) | 
						
							| 6 | 5 | rexeqi | ⊢ ( ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ( ℕ  ∪  { 0 } ) 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 7 |  | rexun | ⊢ ( ∃ 𝑛  ∈  ( ℕ  ∪  { 0 } ) 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 )  ∨  ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 )  ∨  ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 9 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑛  =  0  →  ( 𝑃 ↑ 𝑛 )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( 𝑛  =  0  →  ( 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ 0 ) ) ) | 
						
							| 12 | 11 | rexsng | ⊢ ( 0  ∈  ℤ  →  ( ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ 0 ) ) ) | 
						
							| 13 | 9 12 | ax-mp | ⊢ ( ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 )  ↔  𝐴  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 14 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 15 | 14 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 16 | 15 | exp0d | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  =  ( 𝑃 ↑ 0 )  ↔  𝐴  =  1 ) ) | 
						
							| 19 |  | eluz2b3 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝐴  ∈  ℕ  ∧  𝐴  ≠  1 ) ) | 
						
							| 20 |  | eqneqall | ⊢ ( 𝐴  =  1  →  ( 𝐴  ≠  1  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 21 | 20 | com12 | ⊢ ( 𝐴  ≠  1  →  ( 𝐴  =  1  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 22 | 19 21 | simplbiim | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  =  1  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  =  1  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 24 | 18 23 | sylbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  =  ( 𝑃 ↑ 0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 25 | 24 | com12 | ⊢ ( 𝐴  =  ( 𝑃 ↑ 0 )  →  ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) ) | 
						
							| 26 | 25 | impd | ⊢ ( 𝐴  =  ( 𝑃 ↑ 0 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 27 | 13 26 | sylbi | ⊢ ( ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 28 | 27 | jao1i | ⊢ ( ( ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 )  ∨  ∃ 𝑛  ∈  { 0 } 𝐴  =  ( 𝑃 ↑ 𝑛 ) )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 29 | 8 28 | sylbi | ⊢ ( ∃ 𝑛  ∈  ℕ0 𝐴  =  ( 𝑃 ↑ 𝑛 )  →  ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 30 | 4 29 | mpcom | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  ∥  ( 𝑃 ↑ 𝑁 ) )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 31 | 30 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ∥  ( 𝑃 ↑ 𝑁 )  →  ∃ 𝑛  ∈  ℕ 𝐴  =  ( 𝑃 ↑ 𝑛 ) ) ) |