Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
dvdsr.3 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
2
|
reldvdsr |
⊢ Rel ∥ |
5 |
4
|
brrelex12i |
⊢ ( 𝑋 ∥ 𝑌 → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
6 |
|
elex |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ V ) |
7 |
|
id |
⊢ ( ( 𝑧 · 𝑋 ) = 𝑌 → ( 𝑧 · 𝑋 ) = 𝑌 ) |
8 |
|
ovex |
⊢ ( 𝑧 · 𝑋 ) ∈ V |
9 |
7 8
|
eqeltrrdi |
⊢ ( ( 𝑧 · 𝑋 ) = 𝑌 → 𝑌 ∈ V ) |
10 |
9
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 → 𝑌 ∈ V ) |
11 |
6 10
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) → ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) ) |
12 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
13 |
12
|
eleq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
14 |
12
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 · 𝑥 ) = ( 𝑧 · 𝑋 ) ) |
15 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
16 |
14 15
|
eqeq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑧 · 𝑥 ) = 𝑦 ↔ ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
17 |
16
|
rexbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |
18 |
13 17
|
anbi12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) ) |
19 |
1 2 3
|
dvdsrval |
⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } |
20 |
18 19
|
brabga |
⊢ ( ( 𝑋 ∈ V ∧ 𝑌 ∈ V ) → ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) ) |
21 |
5 11 20
|
pm5.21nii |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) ) |