| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | dvdsr0.d | ⊢  ∥   =  ( ∥r ‘ 𝑅 ) | 
						
							| 3 |  | dvdsr0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐵 ) | 
						
							| 5 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 6 | 1 5 3 | ringlz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =   0   →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  (  0  ( .r ‘ 𝑅 ) 𝑋 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑥  =   0   →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =   0   ↔  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) ) | 
						
							| 9 | 8 | rspcev | ⊢ ( (  0   ∈  𝐵  ∧  (  0  ( .r ‘ 𝑅 ) 𝑋 )  =   0  )  →  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) | 
						
							| 10 | 4 6 9 | syl2an2r | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) | 
						
							| 11 | 1 2 5 | dvdsr2 | ⊢ ( 𝑋  ∈  𝐵  →  ( 𝑋  ∥   0   ↔  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( 𝑋  ∥   0   ↔  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =   0  ) ) | 
						
							| 13 | 10 12 | mpbird | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  𝑋  ∥   0  ) |