| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | dvdsr0.d | ⊢  ∥   =  ( ∥r ‘ 𝑅 ) | 
						
							| 3 |  | dvdsr0.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 4 | 1 3 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →   0   ∈  𝐵 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →   0   ∈  𝐵 ) | 
						
							| 6 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 7 | 1 2 6 | dvdsr2 | ⊢ (  0   ∈  𝐵  →  (  0   ∥  𝑋  ↔  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋 ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  (  0   ∥  𝑋  ↔  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋 ) ) | 
						
							| 9 | 1 6 3 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋  ↔   0   =  𝑋 ) ) | 
						
							| 11 |  | eqcom | ⊢ (  0   =  𝑋  ↔  𝑋  =   0  ) | 
						
							| 12 | 10 11 | bitrdi | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋  ↔  𝑋  =   0  ) ) | 
						
							| 13 | 12 | rexbidva | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋  ↔  ∃ 𝑥  ∈  𝐵 𝑋  =   0  ) ) | 
						
							| 14 |  | ringgrp | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Grp ) | 
						
							| 15 | 1 | grpbn0 | ⊢ ( 𝑅  ∈  Grp  →  𝐵  ≠  ∅ ) | 
						
							| 16 |  | r19.9rzv | ⊢ ( 𝐵  ≠  ∅  →  ( 𝑋  =   0   ↔  ∃ 𝑥  ∈  𝐵 𝑋  =   0  ) ) | 
						
							| 17 | 14 15 16 | 3syl | ⊢ ( 𝑅  ∈  Ring  →  ( 𝑋  =   0   ↔  ∃ 𝑥  ∈  𝐵 𝑋  =   0  ) ) | 
						
							| 18 | 13 17 | bitr4d | ⊢ ( 𝑅  ∈  Ring  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋  ↔  𝑋  =   0  ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 )  0  )  =  𝑋  ↔  𝑋  =   0  ) ) | 
						
							| 20 | 8 19 | bitrd | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  (  0   ∥  𝑋  ↔  𝑋  =   0  ) ) |