Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsr0.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
dvdsr0.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
1 3
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
5 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
1 2 6
|
dvdsr2 |
⊢ ( 0 ∈ 𝐵 → ( 0 ∥ 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ) ) |
8 |
5 7
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∥ 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ) ) |
9 |
1 6 3
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
10 |
9
|
eqeq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 0 = 𝑋 ) ) |
11 |
|
eqcom |
⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) |
12 |
10 11
|
bitrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
13 |
12
|
rexbidva |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) |
14 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
15 |
1
|
grpbn0 |
⊢ ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ ) |
16 |
|
r19.9rzv |
⊢ ( 𝐵 ≠ ∅ → ( 𝑋 = 0 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) |
17 |
14 15 16
|
3syl |
⊢ ( 𝑅 ∈ Ring → ( 𝑋 = 0 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) |
18 |
13 17
|
bitr4d |
⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
20 |
8 19
|
bitrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 ) ) |