Metamath Proof Explorer


Theorem dvdsr1p

Description: Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses dvdsq1p.p 𝑃 = ( Poly1𝑅 )
dvdsq1p.d = ( ∥r𝑃 )
dvdsq1p.b 𝐵 = ( Base ‘ 𝑃 )
dvdsq1p.c 𝐶 = ( Unic1p𝑅 )
dvdsr1p.z 0 = ( 0g𝑃 )
dvdsr1p.e 𝐸 = ( rem1p𝑅 )
Assertion dvdsr1p ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐺 𝐹 ↔ ( 𝐹 𝐸 𝐺 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 dvdsq1p.p 𝑃 = ( Poly1𝑅 )
2 dvdsq1p.d = ( ∥r𝑃 )
3 dvdsq1p.b 𝐵 = ( Base ‘ 𝑃 )
4 dvdsq1p.c 𝐶 = ( Unic1p𝑅 )
5 dvdsr1p.z 0 = ( 0g𝑃 )
6 dvdsr1p.e 𝐸 = ( rem1p𝑅 )
7 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
8 7 3ad2ant1 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝑃 ∈ Ring )
9 ringgrp ( 𝑃 ∈ Ring → 𝑃 ∈ Grp )
10 8 9 syl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝑃 ∈ Grp )
11 simp2 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐹𝐵 )
12 eqid ( quot1p𝑅 ) = ( quot1p𝑅 )
13 12 1 3 4 q1pcl ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ∈ 𝐵 )
14 1 3 4 uc1pcl ( 𝐺𝐶𝐺𝐵 )
15 14 3ad2ant3 ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → 𝐺𝐵 )
16 eqid ( .r𝑃 ) = ( .r𝑃 )
17 3 16 ringcl ( ( 𝑃 ∈ Ring ∧ ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ∈ 𝐵𝐺𝐵 ) → ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ∈ 𝐵 )
18 8 13 15 17 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ∈ 𝐵 )
19 eqid ( -g𝑃 ) = ( -g𝑃 )
20 3 5 19 grpsubeq0 ( ( 𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ∈ 𝐵 ) → ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) = 0𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
21 10 11 18 20 syl3anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( 𝐹 ( -g𝑃 ) ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) = 0𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
22 6 1 3 12 16 19 r1pval ( ( 𝐹𝐵𝐺𝐵 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g𝑃 ) ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
23 11 15 22 syl2anc ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g𝑃 ) ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
24 23 eqeq1d ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( ( 𝐹 𝐸 𝐺 ) = 0 ↔ ( 𝐹 ( -g𝑃 ) ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) = 0 ) )
25 1 2 3 4 16 12 dvdsq1p ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐺 𝐹𝐹 = ( ( 𝐹 ( quot1p𝑅 ) 𝐺 ) ( .r𝑃 ) 𝐺 ) ) )
26 21 24 25 3bitr4rd ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶 ) → ( 𝐺 𝐹 ↔ ( 𝐹 𝐸 𝐺 ) = 0 ) )