Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsq1p.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
dvdsq1p.d |
⊢ ∥ = ( ∥r ‘ 𝑃 ) |
3 |
|
dvdsq1p.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
dvdsq1p.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
5 |
|
dvdsr1p.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
6 |
|
dvdsr1p.e |
⊢ 𝐸 = ( rem1p ‘ 𝑅 ) |
7 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑃 ∈ Ring ) |
9 |
|
ringgrp |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ Grp ) |
10 |
8 9
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑃 ∈ Grp ) |
11 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐹 ∈ 𝐵 ) |
12 |
|
eqid |
⊢ ( quot1p ‘ 𝑅 ) = ( quot1p ‘ 𝑅 ) |
13 |
12 1 3 4
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ) |
14 |
1 3 4
|
uc1pcl |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵 ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
17 |
3 16
|
ringcl |
⊢ ( ( 𝑃 ∈ Ring ∧ ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ) |
18 |
8 13 15 17
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ) |
19 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
20 |
3 5 19
|
grpsubeq0 |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ∈ 𝐵 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = 0 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
21 |
10 11 18 20
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = 0 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
22 |
6 1 3 12 16 19
|
r1pval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
23 |
11 15 22
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝐸 𝐺 ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
24 |
23
|
eqeq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 𝐸 𝐺 ) = 0 ↔ ( 𝐹 ( -g ‘ 𝑃 ) ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) = 0 ) ) |
25 |
1 2 3 4 16 12
|
dvdsq1p |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐺 ∥ 𝐹 ↔ 𝐹 = ( ( 𝐹 ( quot1p ‘ 𝑅 ) 𝐺 ) ( .r ‘ 𝑃 ) 𝐺 ) ) ) |
26 |
21 24 25
|
3bitr4rd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐺 ∥ 𝐹 ↔ ( 𝐹 𝐸 𝐺 ) = 0 ) ) |