Metamath Proof Explorer


Theorem dvdsr2

Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
dvdsr.2 = ( ∥r𝑅 )
dvdsr.3 · = ( .r𝑅 )
Assertion dvdsr2 ( 𝑋𝐵 → ( 𝑋 𝑌 ↔ ∃ 𝑧𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) )

Proof

Step Hyp Ref Expression
1 dvdsr.1 𝐵 = ( Base ‘ 𝑅 )
2 dvdsr.2 = ( ∥r𝑅 )
3 dvdsr.3 · = ( .r𝑅 )
4 1 2 3 dvdsr ( 𝑋 𝑌 ↔ ( 𝑋𝐵 ∧ ∃ 𝑧𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) )
5 4 baib ( 𝑋𝐵 → ( 𝑋 𝑌 ↔ ∃ 𝑧𝐵 ( 𝑧 · 𝑋 ) = 𝑌 ) )