| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdsr.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | dvdsr.2 | ⊢  ∥   =  ( ∥r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 4 | 1 2 3 | dvdsr | ⊢ ( 𝑋  ∥  𝑌  ↔  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  𝑌 ) ) | 
						
							| 5 | 1 3 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵 ) | 
						
							| 6 | 5 | 3expa | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑥  ∈  𝐵 )  ∧  𝑋  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵 ) | 
						
							| 7 | 6 | an32s | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵 ) | 
						
							| 8 |  | eleq1 | ⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  𝑌  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  ∈  𝐵  ↔  𝑌  ∈  𝐵 ) ) | 
						
							| 9 | 7 8 | syl5ibcom | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  𝑌  →  𝑌  ∈  𝐵 ) ) | 
						
							| 10 | 9 | rexlimdva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  𝑌  →  𝑌  ∈  𝐵 ) ) | 
						
							| 11 | 10 | impr | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑥  ∈  𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑋 )  =  𝑌 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 12 | 4 11 | sylan2b | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑋  ∥  𝑌 )  →  𝑌  ∈  𝐵 ) |