Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
dvdsrneg.5 |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
4 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
5 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
7 |
1 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
8 |
1 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
9 |
5 7 8
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
11 |
1 2 10
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
12 |
4 9 11
|
syl2anr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
13 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
14 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
15 |
1 10 6 3 13 14
|
ringnegl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
16 |
12 15
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑁 ‘ 𝑋 ) ) |