| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 3 |
|
dvdsrneg.5 |
⊢ 𝑁 = ( invg ‘ 𝑅 ) |
| 4 |
|
id |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵 ) |
| 5 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 7 |
1 6
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 8 |
1 3
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 11 |
1 2 10
|
dvdsrmul |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 12 |
4 9 11
|
syl2anr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 13 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 14 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
1 10 6 3 13 14
|
ringnegl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| 16 |
12 15
|
breqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∥ ( 𝑁 ‘ 𝑋 ) ) |