Step |
Hyp |
Ref |
Expression |
1 |
|
rngidpropd.1 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) |
2 |
|
rngidpropd.2 |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) |
3 |
|
rngidpropd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
4 |
3
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
6 |
5
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
7 |
6
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
8 |
7
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
9 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) |
10 |
1
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ) |
11 |
9 10
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ) ) |
12 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐿 ) ) ) |
13 |
2
|
rexeqdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) |
14 |
12 13
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
15 |
8 11 14
|
3bitr3d |
⊢ ( 𝜑 → ( ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) ) ) |
16 |
15
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) } ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
18 |
|
eqid |
⊢ ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐾 ) |
19 |
|
eqid |
⊢ ( .r ‘ 𝐾 ) = ( .r ‘ 𝐾 ) |
20 |
17 18 19
|
dvdsrval |
⊢ ( ∥r ‘ 𝐾 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r ‘ 𝐾 ) 𝑦 ) = 𝑧 ) } |
21 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
22 |
|
eqid |
⊢ ( ∥r ‘ 𝐿 ) = ( ∥r ‘ 𝐿 ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝐿 ) = ( .r ‘ 𝐿 ) |
24 |
21 22 23
|
dvdsrval |
⊢ ( ∥r ‘ 𝐿 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r ‘ 𝐿 ) 𝑦 ) = 𝑧 ) } |
25 |
16 20 24
|
3eqtr4g |
⊢ ( 𝜑 → ( ∥r ‘ 𝐾 ) = ( ∥r ‘ 𝐿 ) ) |