Metamath Proof Explorer


Theorem dvdsrpropd

Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)

Ref Expression
Hypotheses rngidpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
rngidpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
rngidpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
Assertion dvdsrpropd ( 𝜑 → ( ∥r𝐾 ) = ( ∥r𝐿 ) )

Proof

Step Hyp Ref Expression
1 rngidpropd.1 ( 𝜑𝐵 = ( Base ‘ 𝐾 ) )
2 rngidpropd.2 ( 𝜑𝐵 = ( Base ‘ 𝐿 ) )
3 rngidpropd.3 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
4 3 anassrs ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( 𝑥 ( .r𝐾 ) 𝑦 ) = ( 𝑥 ( .r𝐿 ) 𝑦 ) )
5 4 eqeq1d ( ( ( 𝜑𝑥𝐵 ) ∧ 𝑦𝐵 ) → ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) )
6 5 an32s ( ( ( 𝜑𝑦𝐵 ) ∧ 𝑥𝐵 ) → ( ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ↔ ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) )
7 6 rexbidva ( ( 𝜑𝑦𝐵 ) → ( ∃ 𝑥𝐵 ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥𝐵 ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) )
8 7 pm5.32da ( 𝜑 → ( ( 𝑦𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) ) )
9 1 eleq2d ( 𝜑 → ( 𝑦𝐵𝑦 ∈ ( Base ‘ 𝐾 ) ) )
10 1 rexeqdv ( 𝜑 → ( ∃ 𝑥𝐵 ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) )
11 9 10 anbi12d ( 𝜑 → ( ( 𝑦𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) ) )
12 2 eleq2d ( 𝜑 → ( 𝑦𝐵𝑦 ∈ ( Base ‘ 𝐿 ) ) )
13 2 rexeqdv ( 𝜑 → ( ∃ 𝑥𝐵 ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) )
14 12 13 anbi12d ( 𝜑 → ( ( 𝑦𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) ) )
15 8 11 14 3bitr3d ( 𝜑 → ( ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) ) )
16 15 opabbidv ( 𝜑 → { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) } = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) } )
17 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
18 eqid ( ∥r𝐾 ) = ( ∥r𝐾 )
19 eqid ( .r𝐾 ) = ( .r𝐾 )
20 17 18 19 dvdsrval ( ∥r𝐾 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( .r𝐾 ) 𝑦 ) = 𝑧 ) }
21 eqid ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 )
22 eqid ( ∥r𝐿 ) = ( ∥r𝐿 )
23 eqid ( .r𝐿 ) = ( .r𝐿 )
24 21 22 23 dvdsrval ( ∥r𝐿 ) = { ⟨ 𝑦 , 𝑧 ⟩ ∣ ( 𝑦 ∈ ( Base ‘ 𝐿 ) ∧ ∃ 𝑥 ∈ ( Base ‘ 𝐿 ) ( 𝑥 ( .r𝐿 ) 𝑦 ) = 𝑧 ) }
25 16 20 24 3eqtr4g ( 𝜑 → ( ∥r𝐾 ) = ( ∥r𝐿 ) )