Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsrspss.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsrspss.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
dvdsrspss.d |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
4 |
|
dvdsrspss.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
dvdsrspss.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
dvdsrspss.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
1 3 7
|
dvdsr |
⊢ ( 𝑋 ∥ 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
9 |
4
|
biantrurd |
⊢ ( 𝜑 → ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) ) |
10 |
8 9
|
bitr4id |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
11 |
1 7 2
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
12 |
6 4 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
13 |
|
eqcom |
⊢ ( ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) |
14 |
13
|
rexbii |
⊢ ( ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ↔ ∃ 𝑡 ∈ 𝐵 𝑌 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) ) |
15 |
12 14
|
bitr4di |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑡 ∈ 𝐵 ( 𝑡 ( .r ‘ 𝑅 ) 𝑋 ) = 𝑌 ) ) |
16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑅 ∈ Ring ) |
17 |
4
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
18 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
19 |
2 1 18
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
20 |
6 17 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
23 |
22
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
24 |
2 18
|
rspssp |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ∧ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
25 |
16 21 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
26 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
27 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑌 } ⊆ 𝐵 ) |
28 |
2 1
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑌 } ⊆ 𝐵 ) → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) |
29 |
6 27 28
|
syl2anc |
⊢ ( 𝜑 → { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) |
30 |
|
snssg |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ↔ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) ) |
31 |
30
|
biimpar |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ { 𝑌 } ⊆ ( 𝐾 ‘ { 𝑌 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
32 |
5 29 31
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑌 } ) ) |
34 |
26 33
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) → 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
35 |
25 34
|
impbida |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |
36 |
10 15 35
|
3bitr2d |
⊢ ( 𝜑 → ( 𝑋 ∥ 𝑌 ↔ ( 𝐾 ‘ { 𝑌 } ) ⊆ ( 𝐾 ‘ { 𝑋 } ) ) ) |