Step |
Hyp |
Ref |
Expression |
1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
4 |
1 2 3
|
dvdsr |
⊢ ( 𝑌 ∥ 𝑍 ↔ ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ) |
5 |
1 2 3
|
dvdsr |
⊢ ( 𝑍 ∥ 𝑋 ↔ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) |
6 |
4 5
|
anbi12i |
⊢ ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ∧ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) |
7 |
|
an4 |
⊢ ( ( ( 𝑌 ∈ 𝐵 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ) ∧ ( 𝑍 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) ) |
9 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ↔ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) |
10 |
|
simplrl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
11 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑅 ∈ Ring ) |
12 |
|
simprr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
13 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
14 |
1 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
16 |
1 2 3
|
dvdsrmul |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) → 𝑌 ∥ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) ) |
17 |
10 15 16
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∥ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) ) |
18 |
1 3
|
ringass |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
19 |
11 12 13 10 18
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( .r ‘ 𝑅 ) 𝑌 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
20 |
17 19
|
breqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑌 ∥ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ) |
21 |
|
oveq2 |
⊢ ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) ) |
22 |
|
id |
⊢ ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) |
23 |
21 22
|
sylan9eq |
⊢ ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) = 𝑋 ) |
24 |
23
|
breq2d |
⊢ ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → ( 𝑌 ∥ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) ) ↔ 𝑌 ∥ 𝑋 ) ) |
25 |
20 24
|
syl5ibcom |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
26 |
25
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐵 ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
27 |
9 26
|
syl5bir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
28 |
27
|
expimpd |
⊢ ( 𝑅 ∈ Ring → ( ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ( ∃ 𝑦 ∈ 𝐵 ( 𝑦 ( .r ‘ 𝑅 ) 𝑌 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 𝑍 ) = 𝑋 ) ) → 𝑌 ∥ 𝑋 ) ) |
29 |
8 28
|
syl5bi |
⊢ ( 𝑅 ∈ Ring → ( ( 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) → 𝑌 ∥ 𝑋 ) ) |
30 |
29
|
3impib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋 ) → 𝑌 ∥ 𝑋 ) |