Metamath Proof Explorer


Theorem dvdsruassoi

Description: If two elements X and Y of a ring R are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses dvdsrspss.b 𝐵 = ( Base ‘ 𝑅 )
dvdsrspss.k 𝐾 = ( RSpan ‘ 𝑅 )
dvdsrspss.d = ( ∥r𝑅 )
dvdsrspss.x ( 𝜑𝑋𝐵 )
dvdsrspss.y ( 𝜑𝑌𝐵 )
dvdsruassoi.1 𝑈 = ( Unit ‘ 𝑅 )
dvdsruassoi.2 · = ( .r𝑅 )
dvdsruassoi.r ( 𝜑𝑅 ∈ Ring )
dvdsruassoi.3 ( 𝜑𝑉𝑈 )
dvdsruassoi.4 ( 𝜑 → ( 𝑉 · 𝑋 ) = 𝑌 )
Assertion dvdsruassoi ( 𝜑 → ( 𝑋 𝑌𝑌 𝑋 ) )

Proof

Step Hyp Ref Expression
1 dvdsrspss.b 𝐵 = ( Base ‘ 𝑅 )
2 dvdsrspss.k 𝐾 = ( RSpan ‘ 𝑅 )
3 dvdsrspss.d = ( ∥r𝑅 )
4 dvdsrspss.x ( 𝜑𝑋𝐵 )
5 dvdsrspss.y ( 𝜑𝑌𝐵 )
6 dvdsruassoi.1 𝑈 = ( Unit ‘ 𝑅 )
7 dvdsruassoi.2 · = ( .r𝑅 )
8 dvdsruassoi.r ( 𝜑𝑅 ∈ Ring )
9 dvdsruassoi.3 ( 𝜑𝑉𝑈 )
10 dvdsruassoi.4 ( 𝜑 → ( 𝑉 · 𝑋 ) = 𝑌 )
11 1 6 unitss 𝑈𝐵
12 11 9 sselid ( 𝜑𝑉𝐵 )
13 oveq1 ( 𝑡 = 𝑉 → ( 𝑡 · 𝑋 ) = ( 𝑉 · 𝑋 ) )
14 13 eqeq1d ( 𝑡 = 𝑉 → ( ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑉 · 𝑋 ) = 𝑌 ) )
15 14 adantl ( ( 𝜑𝑡 = 𝑉 ) → ( ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑉 · 𝑋 ) = 𝑌 ) )
16 12 15 10 rspcedvd ( 𝜑 → ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 )
17 eqid ( invr𝑅 ) = ( invr𝑅 )
18 6 17 1 ringinvcl ( ( 𝑅 ∈ Ring ∧ 𝑉𝑈 ) → ( ( invr𝑅 ) ‘ 𝑉 ) ∈ 𝐵 )
19 8 9 18 syl2anc ( 𝜑 → ( ( invr𝑅 ) ‘ 𝑉 ) ∈ 𝐵 )
20 oveq1 ( 𝑠 = ( ( invr𝑅 ) ‘ 𝑉 ) → ( 𝑠 · 𝑌 ) = ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑌 ) )
21 20 eqeq1d ( 𝑠 = ( ( invr𝑅 ) ‘ 𝑉 ) → ( ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 ) )
22 21 adantl ( ( 𝜑𝑠 = ( ( invr𝑅 ) ‘ 𝑉 ) ) → ( ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 ) )
23 1 7 8 19 12 4 ringassd ( 𝜑 → ( ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = ( ( ( invr𝑅 ) ‘ 𝑉 ) · ( 𝑉 · 𝑋 ) ) )
24 eqid ( 1r𝑅 ) = ( 1r𝑅 )
25 6 17 7 24 unitlinv ( ( 𝑅 ∈ Ring ∧ 𝑉𝑈 ) → ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑉 ) = ( 1r𝑅 ) )
26 8 9 25 syl2anc ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑉 ) = ( 1r𝑅 ) )
27 26 oveq1d ( 𝜑 → ( ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = ( ( 1r𝑅 ) · 𝑋 ) )
28 1 7 24 8 4 ringlidmd ( 𝜑 → ( ( 1r𝑅 ) · 𝑋 ) = 𝑋 )
29 27 28 eqtrd ( 𝜑 → ( ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑉 ) · 𝑋 ) = 𝑋 )
30 10 oveq2d ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝑉 ) · ( 𝑉 · 𝑋 ) ) = ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑌 ) )
31 23 29 30 3eqtr3rd ( 𝜑 → ( ( ( invr𝑅 ) ‘ 𝑉 ) · 𝑌 ) = 𝑋 )
32 19 22 31 rspcedvd ( 𝜑 → ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 )
33 1 3 7 dvdsr ( 𝑋 𝑌 ↔ ( 𝑋𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) )
34 4 biantrurd ( 𝜑 → ( ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ↔ ( 𝑋𝐵 ∧ ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) ) )
35 33 34 bitr4id ( 𝜑 → ( 𝑋 𝑌 ↔ ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ) )
36 1 3 7 dvdsr ( 𝑌 𝑋 ↔ ( 𝑌𝐵 ∧ ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) )
37 5 biantrurd ( 𝜑 → ( ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ↔ ( 𝑌𝐵 ∧ ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) )
38 36 37 bitr4id ( 𝜑 → ( 𝑌 𝑋 ↔ ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) )
39 35 38 anbi12d ( 𝜑 → ( ( 𝑋 𝑌𝑌 𝑋 ) ↔ ( ∃ 𝑡𝐵 ( 𝑡 · 𝑋 ) = 𝑌 ∧ ∃ 𝑠𝐵 ( 𝑠 · 𝑌 ) = 𝑋 ) ) )
40 16 32 39 mpbir2and ( 𝜑 → ( 𝑋 𝑌𝑌 𝑋 ) )