| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdsr.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
dvdsr.2 |
⊢ ∥ = ( ∥r ‘ 𝑅 ) |
| 3 |
|
dvdsr.3 |
⊢ · = ( .r ‘ 𝑅 ) |
| 4 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 6 |
5
|
eleq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 |
5
|
rexeqdv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
| 10 |
9 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 11 |
10
|
oveqd |
⊢ ( 𝑟 = 𝑅 → ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
| 12 |
11
|
eqeq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) ) |
| 15 |
8 14
|
bitrd |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) ) |
| 16 |
15
|
opabbidv |
⊢ ( 𝑟 = 𝑅 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 17 |
|
df-dvdsr |
⊢ ∥r = ( 𝑟 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) } ) |
| 18 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 19 |
|
eqcom |
⊢ ( ( 𝑧 · 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝑧 · 𝑥 ) ) |
| 20 |
19
|
rexbii |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) ) |
| 21 |
20
|
abbii |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) } |
| 22 |
18
|
abrexex |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) } ∈ V |
| 23 |
21 22
|
eqeltri |
⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝑥 ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V ) |
| 25 |
18 24
|
opabex3 |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ∈ V |
| 26 |
16 17 25
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ∥r ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 27 |
2 26
|
eqtrid |
⊢ ( 𝑅 ∈ V → ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 28 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( ∥r ‘ 𝑅 ) = ∅ ) |
| 29 |
2 28
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → ∥ = ∅ ) |
| 30 |
|
opabn0 |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 31 |
|
n0i |
⊢ ( 𝑥 ∈ 𝐵 → ¬ 𝐵 = ∅ ) |
| 32 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) |
| 33 |
1 32
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
| 34 |
31 33
|
nsyl2 |
⊢ ( 𝑥 ∈ 𝐵 → 𝑅 ∈ V ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V ) |
| 36 |
35
|
exlimivv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V ) |
| 37 |
30 36
|
sylbi |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ → 𝑅 ∈ V ) |
| 38 |
37
|
necon1bi |
⊢ ( ¬ 𝑅 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } = ∅ ) |
| 39 |
29 38
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 40 |
27 39
|
pm2.61i |
⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } |