Metamath Proof Explorer


Theorem dvdsrzring

Description: Ring divisibility in the ring of integers corresponds to ordinary divisibility in ZZ . (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by AV, 9-Jun-2019)

Ref Expression
Assertion dvdsrzring ∥ = ( ∥r ‘ ℤring )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℤ )
2 1 anim1i ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) )
3 simpl ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑥 ∈ ℤ )
4 zmulcl ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ )
5 4 ancoms ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ )
6 eleq1 ( ( 𝑧 · 𝑥 ) = 𝑦 → ( ( 𝑧 · 𝑥 ) ∈ ℤ ↔ 𝑦 ∈ ℤ ) )
7 5 6 syl5ibcom ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑧 · 𝑥 ) = 𝑦𝑦 ∈ ℤ ) )
8 7 rexlimdva ( 𝑥 ∈ ℤ → ( ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦𝑦 ∈ ℤ ) )
9 8 imp ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℤ )
10 simpr ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 )
11 3 9 10 jca31 ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) )
12 2 11 impbii ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) )
13 12 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) }
14 df-dvds ∥ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) }
15 zringbas ℤ = ( Base ‘ ℤring )
16 eqid ( ∥r ‘ ℤring ) = ( ∥r ‘ ℤring )
17 zringmulr · = ( .r ‘ ℤring )
18 15 16 17 dvdsrval ( ∥r ‘ ℤring ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) }
19 13 14 18 3eqtr4i ∥ = ( ∥r ‘ ℤring )