Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → 𝑥 ∈ ℤ ) |
2 |
1
|
anim1i |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
3 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑥 ∈ ℤ ) |
4 |
|
zmulcl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ ) |
5 |
4
|
ancoms |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑧 · 𝑥 ) ∈ ℤ ) |
6 |
|
eleq1 |
⊢ ( ( 𝑧 · 𝑥 ) = 𝑦 → ( ( 𝑧 · 𝑥 ) ∈ ℤ ↔ 𝑦 ∈ ℤ ) ) |
7 |
5 6
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( 𝑧 · 𝑥 ) = 𝑦 → 𝑦 ∈ ℤ ) ) |
8 |
7
|
rexlimdva |
⊢ ( 𝑥 ∈ ℤ → ( ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 → 𝑦 ∈ ℤ ) ) |
9 |
8
|
imp |
⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑦 ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) |
11 |
3 9 10
|
jca31 |
⊢ ( ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
12 |
2 11
|
impbii |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
13 |
12
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } |
14 |
|
df-dvds |
⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } |
15 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
16 |
|
eqid |
⊢ ( ∥r ‘ ℤring ) = ( ∥r ‘ ℤring ) |
17 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
18 |
15 16 17
|
dvdsrval |
⊢ ( ∥r ‘ ℤring ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ℤ ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } |
19 |
13 14 18
|
3eqtr4i |
⊢ ∥ = ( ∥r ‘ ℤring ) |