Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ∥ 𝑁 ↔ 0 ∥ 𝑁 ) ) |
2 |
|
sq0i |
⊢ ( 𝑀 = 0 → ( 𝑀 ↑ 2 ) = 0 ) |
3 |
2
|
breq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
4 |
1 3
|
bibi12d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ↔ ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) ) |
5 |
|
nnabscl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℕ ) |
6 |
|
breq2 |
⊢ ( 𝑁 = 0 → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 0 ) ) |
7 |
|
sq0i |
⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 2 ) = 0 ) |
8 |
7
|
breq2d |
⊢ ( 𝑁 = 0 → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
9 |
6 8
|
bibi12d |
⊢ ( 𝑁 = 0 → ( ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ↔ ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) ) |
10 |
|
nnabscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
11 |
|
dvdssqlem |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( abs ‘ 𝑁 ) ∈ ℕ ) → ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) |
12 |
10 11
|
sylan2 |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) |
13 |
|
nnz |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( abs ‘ 𝑀 ) ∈ ℤ ) |
14 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℤ ) |
15 |
|
dvdsabsb |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
16 |
13 14 15
|
syl2an |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ ( abs ‘ 𝑁 ) ) ) |
17 |
|
nnsqcl |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℕ ) |
18 |
17
|
nnzd |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ) |
19 |
|
zsqcl |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
20 |
19
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
21 |
|
dvdsabsb |
⊢ ( ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
22 |
18 20 21
|
syl2an |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
23 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
24 |
23
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → 𝑁 ∈ ℂ ) |
25 |
|
abssq |
⊢ ( 𝑁 ∈ ℂ → ( ( abs ‘ 𝑁 ) ↑ 2 ) = ( abs ‘ ( 𝑁 ↑ 2 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑁 ) ↑ 2 ) = ( abs ‘ ( 𝑁 ↑ 2 ) ) ) |
27 |
26
|
breq2d |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
28 |
27
|
adantl |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( abs ‘ ( 𝑁 ↑ 2 ) ) ) ) |
29 |
22 28
|
bitr4d |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( ( abs ‘ 𝑁 ) ↑ 2 ) ) ) |
30 |
12 16 29
|
3bitr4d |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
31 |
30
|
anassrs |
⊢ ( ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
32 |
|
dvds0 |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( abs ‘ 𝑀 ) ∥ 0 ) |
33 |
|
zsqcl |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ ) |
34 |
|
dvds0 |
⊢ ( ( ( abs ‘ 𝑀 ) ↑ 2 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) |
35 |
33 34
|
syl |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) |
36 |
32 35
|
2thd |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℤ → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
37 |
13 36
|
syl |
⊢ ( ( abs ‘ 𝑀 ) ∈ ℕ → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 0 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ 0 ) ) |
39 |
9 31 38
|
pm2.61ne |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
40 |
5 39
|
sylan |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) ∥ 𝑁 ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
41 |
|
absdvdsb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
42 |
41
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( abs ‘ 𝑀 ) ∥ 𝑁 ) ) |
43 |
|
zsqcl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
44 |
43
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
45 |
|
absdvdsb |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ) ) |
46 |
44 19 45
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ) ) |
47 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
48 |
|
abssq |
⊢ ( 𝑀 ∈ ℂ → ( ( abs ‘ 𝑀 ) ↑ 2 ) = ( abs ‘ ( 𝑀 ↑ 2 ) ) ) |
49 |
47 48
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( ( abs ‘ 𝑀 ) ↑ 2 ) = ( abs ‘ ( 𝑀 ↑ 2 ) ) ) |
50 |
49
|
eqcomd |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ ( 𝑀 ↑ 2 ) ) = ( ( abs ‘ 𝑀 ) ↑ 2 ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ ( 𝑀 ↑ 2 ) ) = ( ( abs ‘ 𝑀 ) ↑ 2 ) ) |
52 |
51
|
breq1d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝑀 ↑ 2 ) ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
54 |
46 53
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ↔ ( ( abs ‘ 𝑀 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
55 |
40 42 54
|
3bitr4d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
56 |
55
|
an32s |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
57 |
|
0dvds |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 𝑁 = 0 ) ) |
58 |
|
sqeq0 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 ↑ 2 ) = 0 ↔ 𝑁 = 0 ) ) |
59 |
23 58
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 ↑ 2 ) = 0 ↔ 𝑁 = 0 ) ) |
60 |
57 59
|
bitr4d |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ ( 𝑁 ↑ 2 ) = 0 ) ) |
61 |
|
0dvds |
⊢ ( ( 𝑁 ↑ 2 ) ∈ ℤ → ( 0 ∥ ( 𝑁 ↑ 2 ) ↔ ( 𝑁 ↑ 2 ) = 0 ) ) |
62 |
19 61
|
syl |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ ( 𝑁 ↑ 2 ) ↔ ( 𝑁 ↑ 2 ) = 0 ) ) |
63 |
60 62
|
bitr4d |
⊢ ( 𝑁 ∈ ℤ → ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
64 |
63
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∥ 𝑁 ↔ 0 ∥ ( 𝑁 ↑ 2 ) ) ) |
65 |
4 56 64
|
pm2.61ne |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |