Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∥ 𝐴 ) |
2 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
4 |
|
zsqcl |
⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℕ ) |
7 |
6
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐵 ∈ ℤ ) |
8 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
9 |
8
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
10 |
|
dvdstr |
⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝑝 ↑ 2 ) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
11 |
5 7 9 10
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ 2 ) ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
12 |
1 11
|
mpan2d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ 𝐵 → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
13 |
12
|
reximdva |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
14 |
|
isnsqf |
⊢ ( 𝐵 ∈ ℕ → ( ( μ ‘ 𝐵 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 ) ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐵 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐵 ) ) |
16 |
|
isnsqf |
⊢ ( 𝐴 ∈ ℕ → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐴 ) = 0 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
18 |
13 15 17
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐵 ) = 0 → ( μ ‘ 𝐴 ) = 0 ) ) |
19 |
18
|
necon3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐵 ∥ 𝐴 ) → ( ( μ ‘ 𝐴 ) ≠ 0 → ( μ ‘ 𝐵 ) ≠ 0 ) ) |