| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 3 |
|
dvdssqim |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 5 |
|
sqgcd |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
| 7 |
|
nnsqcl |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 8 |
|
nnsqcl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) |
| 9 |
|
gcdeq |
⊢ ( ( ( 𝑀 ↑ 2 ) ∈ ℕ ∧ ( 𝑁 ↑ 2 ) ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 11 |
10
|
biimpar |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) = ( 𝑀 ↑ 2 ) ) |
| 12 |
6 11
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ) |
| 13 |
|
gcdcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 14 |
1 2 13
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0red |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) |
| 16 |
14
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ ( 𝑀 gcd 𝑁 ) ) |
| 17 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 19 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 20 |
19
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ → 0 ≤ 𝑀 ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 ≤ 𝑀 ) |
| 22 |
|
sq11 |
⊢ ( ( ( ( 𝑀 gcd 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 gcd 𝑁 ) ) ∧ ( 𝑀 ∈ ℝ ∧ 0 ≤ 𝑀 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) |
| 23 |
15 16 18 21 22
|
syl22anc |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( 𝑀 ↑ 2 ) ↔ ( 𝑀 gcd 𝑁 ) = 𝑀 ) ) |
| 25 |
12 24
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( 𝑀 gcd 𝑁 ) = 𝑀 ) |
| 26 |
|
gcddvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 27 |
1 2 26
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 29 |
28
|
simprd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 30 |
25 29
|
eqbrtrrd |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) → 𝑀 ∥ 𝑁 ) |
| 31 |
30
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) → 𝑀 ∥ 𝑁 ) ) |
| 32 |
4 31
|
impbid |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |