Metamath Proof Explorer


Theorem dvdsssfz1

Description: The set of divisors of a number is a subset of a finite set. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion dvdsssfz1 ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )

Proof

Step Hyp Ref Expression
1 nnz ( 𝑝 ∈ ℕ → 𝑝 ∈ ℤ )
2 id ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ )
3 dvdsle ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝𝐴𝑝𝐴 ) )
4 1 2 3 syl2anr ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝𝐴𝑝𝐴 ) )
5 ibar ( 𝑝 ∈ ℕ → ( 𝑝𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝𝐴 ) ) )
6 5 adantl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝𝐴 ) ) )
7 nnz ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ )
8 7 adantr ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → 𝐴 ∈ ℤ )
9 fznn ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝𝐴 ) ) )
10 8 9 syl ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝𝐴 ) ) )
11 6 10 bitr4d ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝𝐴𝑝 ∈ ( 1 ... 𝐴 ) ) )
12 4 11 sylibd ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝𝐴𝑝 ∈ ( 1 ... 𝐴 ) ) )
13 12 ralrimiva ( 𝐴 ∈ ℕ → ∀ 𝑝 ∈ ℕ ( 𝑝𝐴𝑝 ∈ ( 1 ... 𝐴 ) ) )
14 rabss ( { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) ↔ ∀ 𝑝 ∈ ℕ ( 𝑝𝐴𝑝 ∈ ( 1 ... 𝐴 ) ) )
15 13 14 sylibr ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝𝐴 } ⊆ ( 1 ... 𝐴 ) )