Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℤ ) |
2 |
|
id |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ ) |
3 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
4 |
1 2 3
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
5 |
|
ibar |
⊢ ( 𝑝 ∈ ℕ → ( 𝑝 ≤ 𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ≤ 𝐴 ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
7 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
9 |
|
fznn |
⊢ ( 𝐴 ∈ ℤ → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∈ ( 1 ... 𝐴 ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ 𝐴 ) ) ) |
11 |
6 10
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ≤ 𝐴 ↔ 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
12 |
4 11
|
sylibd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℕ ) → ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
13 |
12
|
ralrimiva |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑝 ∈ ℕ ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
14 |
|
rabss |
⊢ ( { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ↔ ∀ 𝑝 ∈ ℕ ( 𝑝 ∥ 𝐴 → 𝑝 ∈ ( 1 ... 𝐴 ) ) ) |
15 |
13 14
|
sylibr |
⊢ ( 𝐴 ∈ ℕ → { 𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝐴 } ⊆ ( 1 ... 𝐴 ) ) |