Metamath Proof Explorer


Theorem dvdszrcl

Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion dvdszrcl ( 𝑋𝑌 → ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) )

Proof

Step Hyp Ref Expression
1 df-dvds ∥ = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) }
2 opabssxp { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } ⊆ ( ℤ × ℤ )
3 1 2 eqsstri ∥ ⊆ ( ℤ × ℤ )
4 3 brel ( 𝑋𝑌 → ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) )