Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdszrcl | ⊢ ( 𝑋 ∥ 𝑌 → ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } | |
2 | opabssxp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑧 ∈ ℤ ( 𝑧 · 𝑥 ) = 𝑦 ) } ⊆ ( ℤ × ℤ ) | |
3 | 1 2 | eqsstri | ⊢ ∥ ⊆ ( ℤ × ℤ ) |
4 | 3 | brel | ⊢ ( 𝑋 ∥ 𝑌 → ( 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ ) ) |