| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdszzq.1 | ⊢ 𝑁  =  ( 𝐴  /  𝐵 ) | 
						
							| 2 |  | dvdszzq.2 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | dvdszzq.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | dvdszzq.4 | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 5 |  | dvdszzq.5 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 6 |  | dvdszzq.6 | ⊢ ( 𝜑  →  𝑃  ∥  𝐴 ) | 
						
							| 7 |  | dvdszzq.7 | ⊢ ( 𝜑  →  ¬  𝑃  ∥  𝐵 ) | 
						
							| 8 | 3 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 9 | 4 | zcnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 10 |  | dvdszrcl | ⊢ ( 𝑃  ∥  𝐴  →  ( 𝑃  ∈  ℤ  ∧  𝐴  ∈  ℤ ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( 𝑃  ∥  𝐴  →  𝐴  ∈  ℤ ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 13 | 12 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 14 | 8 9 13 5 | ldiv | ⊢ ( 𝜑  →  ( ( 𝑁  ·  𝐵 )  =  𝐴  ↔  𝑁  =  ( 𝐴  /  𝐵 ) ) ) | 
						
							| 15 | 1 14 | mpbiri | ⊢ ( 𝜑  →  ( 𝑁  ·  𝐵 )  =  𝐴 ) | 
						
							| 16 | 6 15 | breqtrrd | ⊢ ( 𝜑  →  𝑃  ∥  ( 𝑁  ·  𝐵 ) ) | 
						
							| 17 |  | euclemma | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝑁  ·  𝐵 )  ↔  ( 𝑃  ∥  𝑁  ∨  𝑃  ∥  𝐵 ) ) ) | 
						
							| 18 | 17 | biimpa | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑃  ∥  ( 𝑁  ·  𝐵 ) )  →  ( 𝑃  ∥  𝑁  ∨  𝑃  ∥  𝐵 ) ) | 
						
							| 19 | 2 3 4 16 18 | syl31anc | ⊢ ( 𝜑  →  ( 𝑃  ∥  𝑁  ∨  𝑃  ∥  𝐵 ) ) | 
						
							| 20 |  | orcom | ⊢ ( ( 𝑃  ∥  𝑁  ∨  𝑃  ∥  𝐵 )  ↔  ( 𝑃  ∥  𝐵  ∨  𝑃  ∥  𝑁 ) ) | 
						
							| 21 |  | df-or | ⊢ ( ( 𝑃  ∥  𝐵  ∨  𝑃  ∥  𝑁 )  ↔  ( ¬  𝑃  ∥  𝐵  →  𝑃  ∥  𝑁 ) ) | 
						
							| 22 | 20 21 | sylbb | ⊢ ( ( 𝑃  ∥  𝑁  ∨  𝑃  ∥  𝐵 )  →  ( ¬  𝑃  ∥  𝐵  →  𝑃  ∥  𝑁 ) ) | 
						
							| 23 | 19 7 22 | sylc | ⊢ ( 𝜑  →  𝑃  ∥  𝑁 ) |