Metamath Proof Explorer


Theorem dveel2ALT

Description: Alternate proof of dveel2 using ax-c16 instead of ax-5 . (Contributed by NM, 10-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveel2ALT ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧𝑦 → ∀ 𝑥 𝑧𝑦 ) )

Proof

Step Hyp Ref Expression
1 ax5el ( 𝑧𝑤 → ∀ 𝑥 𝑧𝑤 )
2 ax5el ( 𝑧𝑦 → ∀ 𝑤 𝑧𝑦 )
3 elequ2 ( 𝑤 = 𝑦 → ( 𝑧𝑤𝑧𝑦 ) )
4 1 2 3 dvelimh ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧𝑦 → ∀ 𝑥 𝑧𝑦 ) )