Metamath Proof Explorer


Theorem dveeq1-o16

Description: Version of dveeq1 using ax-c16 instead of ax-5 . (Contributed by NM, 29-Apr-2008) TODO: Recover proof from older set.mm to remove use of ax-5 . (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveeq1-o16 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )

Proof

Step Hyp Ref Expression
1 ax5eq ( 𝑤 = 𝑧 → ∀ 𝑥 𝑤 = 𝑧 )
2 ax5eq ( 𝑦 = 𝑧 → ∀ 𝑤 𝑦 = 𝑧 )
3 equequ1 ( 𝑤 = 𝑦 → ( 𝑤 = 𝑧𝑦 = 𝑧 ) )
4 1 2 3 dvelimh ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) )