Step |
Hyp |
Ref |
Expression |
1 |
|
dvfcn |
⊢ ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ |
2 |
|
dvbsss |
⊢ dom ( ℂ D exp ) ⊆ ℂ |
3 |
|
subcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − 𝑥 ) ∈ ℂ ) |
5 |
|
efadd |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑧 − 𝑥 ) ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
7 |
|
pncan3 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑥 + ( 𝑧 − 𝑥 ) ) = 𝑧 ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑥 + ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
9 |
6 8
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( exp ‘ 𝑧 ) ) |
10 |
9
|
mpteq2dva |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
11 |
|
cnex |
⊢ ℂ ∈ V |
12 |
11
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ℂ ∈ V ) |
13 |
|
fvexd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ 𝑥 ) ∈ V ) |
14 |
|
fvexd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ V ) |
15 |
|
fconstmpt |
⊢ ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
16 |
15
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
17 |
|
eqidd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
18 |
12 13 14 16 17
|
offval2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = ( 𝑧 ∈ ℂ ↦ ( ( exp ‘ 𝑥 ) · ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
19 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
20 |
19
|
a1i |
⊢ ( 𝑥 ∈ ℂ → exp : ℂ ⟶ ℂ ) |
21 |
20
|
feqmptd |
⊢ ( 𝑥 ∈ ℂ → exp = ( 𝑧 ∈ ℂ ↦ ( exp ‘ 𝑧 ) ) ) |
22 |
10 18 21
|
3eqtr4d |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) = exp ) |
23 |
22
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) = ( ℂ D exp ) ) |
24 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
25 |
|
fconstg |
⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) |
26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ { ( exp ‘ 𝑥 ) } ) |
27 |
24
|
snssd |
⊢ ( 𝑥 ∈ ℂ → { ( exp ‘ 𝑥 ) } ⊆ ℂ ) |
28 |
26 27
|
fssd |
⊢ ( 𝑥 ∈ ℂ → ( ℂ × { ( exp ‘ 𝑥 ) } ) : ℂ ⟶ ℂ ) |
29 |
|
ssidd |
⊢ ( 𝑥 ∈ ℂ → ℂ ⊆ ℂ ) |
30 |
|
efcl |
⊢ ( ( 𝑧 − 𝑥 ) ∈ ℂ → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
31 |
4 30
|
syl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( exp ‘ ( 𝑧 − 𝑥 ) ) ∈ ℂ ) |
32 |
31
|
fmpttd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) : ℂ ⟶ ℂ ) |
33 |
|
c0ex |
⊢ 0 ∈ V |
34 |
33
|
snid |
⊢ 0 ∈ { 0 } |
35 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ { 0 } ) → ⟨ 𝑥 , 0 ⟩ ∈ ( ℂ × { 0 } ) ) |
36 |
34 35
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ⟨ 𝑥 , 0 ⟩ ∈ ( ℂ × { 0 } ) ) |
37 |
|
dvconst |
⊢ ( ( exp ‘ 𝑥 ) ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) |
38 |
24 37
|
syl |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) = ( ℂ × { 0 } ) ) |
39 |
36 38
|
eleqtrrd |
⊢ ( 𝑥 ∈ ℂ → ⟨ 𝑥 , 0 ⟩ ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) |
40 |
|
df-br |
⊢ ( 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ↔ ⟨ 𝑥 , 0 ⟩ ∈ ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) ) |
41 |
39 40
|
sylibr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ℂ × { ( exp ‘ 𝑥 ) } ) ) 0 ) |
42 |
20 4
|
cofmpt |
⊢ ( 𝑥 ∈ ℂ → ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) = ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) |
44 |
4
|
fmpttd |
⊢ ( 𝑥 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) : ℂ ⟶ ℂ ) |
45 |
|
oveq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 − 𝑥 ) = ( 𝑥 − 𝑥 ) ) |
46 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) |
47 |
|
ovex |
⊢ ( 𝑥 − 𝑥 ) ∈ V |
48 |
45 46 47
|
fvmpt |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = ( 𝑥 − 𝑥 ) ) |
49 |
|
subid |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 𝑥 ) = 0 ) |
50 |
48 49
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) = 0 ) |
51 |
|
dveflem |
⊢ 0 ( ℂ D exp ) 1 |
52 |
50 51
|
eqbrtrdi |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ‘ 𝑥 ) ( ℂ D exp ) 1 ) |
53 |
|
1ex |
⊢ 1 ∈ V |
54 |
53
|
snid |
⊢ 1 ∈ { 1 } |
55 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℂ ∧ 1 ∈ { 1 } ) → ⟨ 𝑥 , 1 ⟩ ∈ ( ℂ × { 1 } ) ) |
56 |
54 55
|
mpan2 |
⊢ ( 𝑥 ∈ ℂ → ⟨ 𝑥 , 1 ⟩ ∈ ( ℂ × { 1 } ) ) |
57 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
58 |
57
|
a1i |
⊢ ( 𝑥 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
59 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
60 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 1 ∈ ℂ ) |
61 |
58
|
dvmptid |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) ) |
62 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
63 |
|
0cnd |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 0 ∈ ℂ ) |
64 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
65 |
58 64
|
dvmptc |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑧 ∈ ℂ ↦ 0 ) ) |
66 |
58 59 60 61 62 63 65
|
dvmptsub |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) ) |
67 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
68 |
67
|
mpteq2i |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
69 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑧 ∈ ℂ ↦ 1 ) |
70 |
68 69
|
eqtr4i |
⊢ ( 𝑧 ∈ ℂ ↦ ( 1 − 0 ) ) = ( ℂ × { 1 } ) |
71 |
66 70
|
eqtrdi |
⊢ ( 𝑥 ∈ ℂ → ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) = ( ℂ × { 1 } ) ) |
72 |
56 71
|
eleqtrrd |
⊢ ( 𝑥 ∈ ℂ → ⟨ 𝑥 , 1 ⟩ ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) |
73 |
|
df-br |
⊢ ( 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ↔ ⟨ 𝑥 , 1 ⟩ ∈ ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) |
74 |
72 73
|
sylibr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) 1 ) |
75 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
76 |
20 29 44 29 29 29 52 74 75
|
dvcobr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) ( 1 · 1 ) ) |
77 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
78 |
76 77
|
breqtrdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( exp ∘ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
79 |
43 78
|
breqdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) 1 ) |
80 |
28 29 32 29 29 41 79 75
|
dvmulbr |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) ) |
81 |
32 64
|
ffvelcdmd |
⊢ ( 𝑥 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
82 |
81
|
mul02d |
⊢ ( 𝑥 ∈ ℂ → ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) = 0 ) |
83 |
|
fvex |
⊢ ( exp ‘ 𝑥 ) ∈ V |
84 |
83
|
fvconst2 |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
85 |
84
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( 1 · ( exp ‘ 𝑥 ) ) ) |
86 |
24
|
mullidd |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
87 |
85 86
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
88 |
82 87
|
oveq12d |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( 0 + ( exp ‘ 𝑥 ) ) ) |
89 |
24
|
addlidd |
⊢ ( 𝑥 ∈ ℂ → ( 0 + ( exp ‘ 𝑥 ) ) = ( exp ‘ 𝑥 ) ) |
90 |
88 89
|
eqtrd |
⊢ ( 𝑥 ∈ ℂ → ( ( 0 · ( ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ‘ 𝑥 ) ) + ( 1 · ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ‘ 𝑥 ) ) ) = ( exp ‘ 𝑥 ) ) |
91 |
80 90
|
breqtrd |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D ( ( ℂ × { ( exp ‘ 𝑥 ) } ) ∘f · ( 𝑧 ∈ ℂ ↦ ( exp ‘ ( 𝑧 − 𝑥 ) ) ) ) ) ( exp ‘ 𝑥 ) ) |
92 |
23 91
|
breqdi |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) ) |
93 |
|
vex |
⊢ 𝑥 ∈ V |
94 |
93 83
|
breldm |
⊢ ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → 𝑥 ∈ dom ( ℂ D exp ) ) |
95 |
92 94
|
syl |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ dom ( ℂ D exp ) ) |
96 |
95
|
ssriv |
⊢ ℂ ⊆ dom ( ℂ D exp ) |
97 |
2 96
|
eqssi |
⊢ dom ( ℂ D exp ) = ℂ |
98 |
97
|
feq2i |
⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ ↔ ( ℂ D exp ) : ℂ ⟶ ℂ ) |
99 |
1 98
|
mpbi |
⊢ ( ℂ D exp ) : ℂ ⟶ ℂ |
100 |
99
|
a1i |
⊢ ( ⊤ → ( ℂ D exp ) : ℂ ⟶ ℂ ) |
101 |
100
|
feqmptd |
⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) ) |
102 |
|
ffun |
⊢ ( ( ℂ D exp ) : dom ( ℂ D exp ) ⟶ ℂ → Fun ( ℂ D exp ) ) |
103 |
1 102
|
ax-mp |
⊢ Fun ( ℂ D exp ) |
104 |
|
funbrfv |
⊢ ( Fun ( ℂ D exp ) → ( 𝑥 ( ℂ D exp ) ( exp ‘ 𝑥 ) → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) ) |
105 |
103 92 104
|
mpsyl |
⊢ ( 𝑥 ∈ ℂ → ( ( ℂ D exp ) ‘ 𝑥 ) = ( exp ‘ 𝑥 ) ) |
106 |
105
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( ( ℂ D exp ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) |
107 |
101 106
|
eqtrdi |
⊢ ( ⊤ → ( ℂ D exp ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
108 |
19
|
a1i |
⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
109 |
108
|
feqmptd |
⊢ ( ⊤ → exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
110 |
107 109
|
eqtr4d |
⊢ ( ⊤ → ( ℂ D exp ) = exp ) |
111 |
110
|
mptru |
⊢ ( ℂ D exp ) = exp |