Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
⊢ 0 ∈ ℂ |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
4 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
5 |
4
|
ntrtop |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ ) |
6 |
3 5
|
ax-mp |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) = ℂ |
7 |
1 6
|
eleqtrri |
⊢ 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
|
1rp |
⊢ 1 ∈ ℝ+ |
10 |
|
ifcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝑥 ∈ ℝ+ → if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ) |
12 |
|
eldifsn |
⊢ ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
13 |
|
simprl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 𝑤 ∈ ℂ ) |
14 |
13
|
subid1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( 𝑤 − 0 ) = 𝑤 ) |
15 |
14
|
fveq2d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( abs ‘ ( 𝑤 − 0 ) ) = ( abs ‘ 𝑤 ) ) |
16 |
15
|
breq1d |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) ) |
17 |
13
|
abscld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
18 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
19 |
18
|
adantr |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 𝑥 ∈ ℝ ) |
20 |
|
1red |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → 1 ∈ ℝ ) |
21 |
|
ltmin |
⊢ ( ( ( abs ‘ 𝑤 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) |
22 |
17 19 20 21
|
syl3anc |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ 𝑤 ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) |
23 |
16 22
|
bitrd |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ↔ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) ) |
24 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
25 |
24 12
|
sylibr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ∈ ( ℂ ∖ { 0 } ) ) |
26 |
|
fveq2 |
⊢ ( 𝑧 = 𝑤 → ( exp ‘ 𝑧 ) = ( exp ‘ 𝑤 ) ) |
27 |
26
|
oveq1d |
⊢ ( 𝑧 = 𝑤 → ( ( exp ‘ 𝑧 ) − 1 ) = ( ( exp ‘ 𝑤 ) − 1 ) ) |
28 |
|
id |
⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) |
29 |
27 28
|
oveq12d |
⊢ ( 𝑧 = 𝑤 → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
30 |
|
eqid |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) |
31 |
|
ovex |
⊢ ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ V |
32 |
29 30 31
|
fvmpt |
⊢ ( 𝑤 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
33 |
25 32
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) = ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ) |
34 |
33
|
fvoveq1d |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) = ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) |
35 |
|
simplrl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ∈ ℂ ) |
36 |
|
efcl |
⊢ ( 𝑤 ∈ ℂ → ( exp ‘ 𝑤 ) ∈ ℂ ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( exp ‘ 𝑤 ) ∈ ℂ ) |
38 |
|
1cnd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 1 ∈ ℂ ) |
39 |
37 38
|
subcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) |
40 |
|
simplrr |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑤 ≠ 0 ) |
41 |
39 35 40
|
divcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ ℂ ) |
42 |
41 38
|
subcld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ∈ ℂ ) |
43 |
42
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ∈ ℝ ) |
44 |
35
|
abscld |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
45 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑥 ∈ ℝ+ ) |
46 |
45
|
rpred |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → 𝑥 ∈ ℝ ) |
47 |
|
abscl |
⊢ ( 𝑤 ∈ ℂ → ( abs ‘ 𝑤 ) ∈ ℝ ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℝ ) |
49 |
36
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) ∈ ℂ ) |
50 |
|
subcl |
⊢ ( ( ( exp ‘ 𝑤 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) |
51 |
49 8 50
|
sylancl |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( exp ‘ 𝑤 ) − 1 ) ∈ ℂ ) |
52 |
|
simpll |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 𝑤 ∈ ℂ ) |
53 |
|
simplr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 𝑤 ≠ 0 ) |
54 |
51 52 53
|
divcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) ∈ ℂ ) |
55 |
|
1cnd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 1 ∈ ℂ ) |
56 |
54 55
|
subcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ∈ ℂ ) |
57 |
56
|
abscld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ∈ ℝ ) |
58 |
48 57
|
remulcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ∈ ℝ ) |
59 |
48
|
resqcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℝ ) |
60 |
|
3re |
⊢ 3 ∈ ℝ |
61 |
|
4nn |
⊢ 4 ∈ ℕ |
62 |
|
nndivre |
⊢ ( ( 3 ∈ ℝ ∧ 4 ∈ ℕ ) → ( 3 / 4 ) ∈ ℝ ) |
63 |
60 61 62
|
mp2an |
⊢ ( 3 / 4 ) ∈ ℝ |
64 |
|
remulcl |
⊢ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℝ ∧ ( 3 / 4 ) ∈ ℝ ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ∈ ℝ ) |
65 |
59 63 64
|
sylancl |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ∈ ℝ ) |
66 |
51 52
|
subcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) ∈ ℂ ) |
67 |
66 52 53
|
divcan2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) ) = ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) ) |
68 |
51 52 52 53
|
divsubdird |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − ( 𝑤 / 𝑤 ) ) ) |
69 |
52 53
|
dividd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 / 𝑤 ) = 1 ) |
70 |
69
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − ( 𝑤 / 𝑤 ) ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) |
71 |
68 70
|
eqtrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) = ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) |
72 |
71
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) / 𝑤 ) ) = ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) |
73 |
49 55 52
|
subsub4d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) = ( ( exp ‘ 𝑤 ) − ( 1 + 𝑤 ) ) ) |
74 |
|
addcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑤 ∈ ℂ ) → ( 1 + 𝑤 ) ∈ ℂ ) |
75 |
8 52 74
|
sylancr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 1 + 𝑤 ) ∈ ℂ ) |
76 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
77 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
78 |
77
|
eftlcl |
⊢ ( ( 𝑤 ∈ ℂ ∧ 2 ∈ ℕ0 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
79 |
52 76 78
|
sylancl |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
80 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
81 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
82 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
83 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
84 |
|
0cnd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 ∈ ℂ ) |
85 |
77
|
efval2 |
⊢ ( 𝑤 ∈ ℂ → ( exp ‘ 𝑤 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
87 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
88 |
87
|
sumeq1i |
⊢ Σ 𝑘 ∈ ℕ0 ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) |
89 |
86 88
|
eqtr2di |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) = ( exp ‘ 𝑤 ) ) |
90 |
89
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( 0 + ( exp ‘ 𝑤 ) ) ) |
91 |
49
|
addid2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( exp ‘ 𝑤 ) ) = ( exp ‘ 𝑤 ) ) |
92 |
90 91
|
eqtr2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
93 |
|
eft0val |
⊢ ( 𝑤 ∈ ℂ → ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) |
95 |
94
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) ) = ( 0 + 1 ) ) |
96 |
95 82
|
eqtr4di |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 0 + ( ( 𝑤 ↑ 0 ) / ( ! ‘ 0 ) ) ) = 1 ) |
97 |
77 82 83 52 84 92 96
|
efsep |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( 1 + Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
98 |
|
exp1 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ↑ 1 ) = 𝑤 ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 ↑ 1 ) = 𝑤 ) |
100 |
99
|
oveq1d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝑤 / ( ! ‘ 1 ) ) ) |
101 |
|
fac1 |
⊢ ( ! ‘ 1 ) = 1 |
102 |
101
|
oveq2i |
⊢ ( 𝑤 / ( ! ‘ 1 ) ) = ( 𝑤 / 1 ) |
103 |
100 102
|
eqtrdi |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝑤 / 1 ) ) |
104 |
|
div1 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 / 1 ) = 𝑤 ) |
105 |
104
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 / 1 ) = 𝑤 ) |
106 |
103 105
|
eqtrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝑤 ) |
107 |
106
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 1 + ( ( 𝑤 ↑ 1 ) / ( ! ‘ 1 ) ) ) = ( 1 + 𝑤 ) ) |
108 |
77 80 81 52 55 97 107
|
efsep |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( exp ‘ 𝑤 ) = ( ( 1 + 𝑤 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
109 |
75 79 108
|
mvrladdd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( exp ‘ 𝑤 ) − ( 1 + 𝑤 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
110 |
73 109
|
eqtrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( exp ‘ 𝑤 ) − 1 ) − 𝑤 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
111 |
67 72 110
|
3eqtr3d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) |
112 |
111
|
fveq2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) = ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
113 |
52 56
|
absmuld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( 𝑤 · ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ) |
114 |
112 113
|
eqtr3d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ) |
115 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝑤 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝑤 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) |
116 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) / ( ! ‘ 2 ) ) · ( ( 1 / ( 2 + 1 ) ) ↑ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝑤 ) ↑ 2 ) / ( ! ‘ 2 ) ) · ( ( 1 / ( 2 + 1 ) ) ↑ 𝑛 ) ) ) |
117 |
|
2nn |
⊢ 2 ∈ ℕ |
118 |
117
|
a1i |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 2 ∈ ℕ ) |
119 |
|
1red |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 1 ∈ ℝ ) |
120 |
|
simpr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) < 1 ) |
121 |
48 119 120
|
ltled |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ≤ 1 ) |
122 |
77 115 116 118 52 121
|
eftlub |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑤 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑘 ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) ) |
123 |
114 122
|
eqbrtrrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) ) |
124 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
125 |
|
fac2 |
⊢ ( ! ‘ 2 ) = 2 |
126 |
125
|
oveq1i |
⊢ ( ( ! ‘ 2 ) · 2 ) = ( 2 · 2 ) |
127 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
128 |
126 127
|
eqtr2i |
⊢ 4 = ( ( ! ‘ 2 ) · 2 ) |
129 |
124 128
|
oveq12i |
⊢ ( 3 / 4 ) = ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) |
130 |
129
|
oveq2i |
⊢ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) = ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( ( 2 + 1 ) / ( ( ! ‘ 2 ) · 2 ) ) ) |
131 |
123 130
|
breqtrrdi |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ) |
132 |
63
|
a1i |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 3 / 4 ) ∈ ℝ ) |
133 |
48
|
sqge0d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
134 |
|
1re |
⊢ 1 ∈ ℝ |
135 |
|
3lt4 |
⊢ 3 < 4 |
136 |
|
4cn |
⊢ 4 ∈ ℂ |
137 |
136
|
mulid1i |
⊢ ( 4 · 1 ) = 4 |
138 |
135 137
|
breqtrri |
⊢ 3 < ( 4 · 1 ) |
139 |
|
4re |
⊢ 4 ∈ ℝ |
140 |
|
4pos |
⊢ 0 < 4 |
141 |
139 140
|
pm3.2i |
⊢ ( 4 ∈ ℝ ∧ 0 < 4 ) |
142 |
|
ltdivmul |
⊢ ( ( 3 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 4 ∈ ℝ ∧ 0 < 4 ) ) → ( ( 3 / 4 ) < 1 ↔ 3 < ( 4 · 1 ) ) ) |
143 |
60 134 141 142
|
mp3an |
⊢ ( ( 3 / 4 ) < 1 ↔ 3 < ( 4 · 1 ) ) |
144 |
138 143
|
mpbir |
⊢ ( 3 / 4 ) < 1 |
145 |
63 134 144
|
ltleii |
⊢ ( 3 / 4 ) ≤ 1 |
146 |
145
|
a1i |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 3 / 4 ) ≤ 1 ) |
147 |
132 119 59 133 146
|
lemul2ad |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ≤ ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · 1 ) ) |
148 |
48
|
recnd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℂ ) |
149 |
148
|
sqcld |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) ∈ ℂ ) |
150 |
149
|
mulid1d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · 1 ) = ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
151 |
147 150
|
breqtrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( ( abs ‘ 𝑤 ) ↑ 2 ) · ( 3 / 4 ) ) ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
152 |
58 65 59 131 151
|
letrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
153 |
148
|
sqvald |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) ↑ 2 ) = ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) |
154 |
152 153
|
breqtrd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) |
155 |
|
absgt0 |
⊢ ( 𝑤 ∈ ℂ → ( 𝑤 ≠ 0 ↔ 0 < ( abs ‘ 𝑤 ) ) ) |
156 |
155
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( 𝑤 ≠ 0 ↔ 0 < ( abs ‘ 𝑤 ) ) ) |
157 |
53 156
|
mpbid |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → 0 < ( abs ‘ 𝑤 ) ) |
158 |
48 157
|
elrpd |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ 𝑤 ) ∈ ℝ+ ) |
159 |
57 48 158
|
lemul2d |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ↔ ( ( abs ‘ 𝑤 ) · ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ) ≤ ( ( abs ‘ 𝑤 ) · ( abs ‘ 𝑤 ) ) ) ) |
160 |
154 159
|
mpbird |
⊢ ( ( ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ) |
161 |
160
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) ≤ ( abs ‘ 𝑤 ) ) |
162 |
|
simprl |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ 𝑤 ) < 𝑥 ) |
163 |
43 44 46 161 162
|
lelttrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( ( exp ‘ 𝑤 ) − 1 ) / 𝑤 ) − 1 ) ) < 𝑥 ) |
164 |
34 163
|
eqbrtrd |
⊢ ( ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ∧ ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) |
165 |
164
|
ex |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( ( abs ‘ 𝑤 ) < 𝑥 ∧ ( abs ‘ 𝑤 ) < 1 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
166 |
23 165
|
sylbid |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
167 |
166
|
adantld |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) → ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
168 |
12 167
|
sylan2b |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑤 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
169 |
168
|
ralrimiva |
⊢ ( 𝑥 ∈ ℝ+ → ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
170 |
|
brimralrspcev |
⊢ ( ( if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ∈ ℝ+ ∧ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < if ( 𝑥 ≤ 1 , 𝑥 , 1 ) ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
171 |
11 169 170
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) |
172 |
171
|
rgen |
⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) |
173 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ℂ ) |
174 |
|
efcl |
⊢ ( 𝑧 ∈ ℂ → ( exp ‘ 𝑧 ) ∈ ℂ ) |
175 |
173 174
|
syl |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( exp ‘ 𝑧 ) ∈ ℂ ) |
176 |
|
1cnd |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 1 ∈ ℂ ) |
177 |
175 176
|
subcld |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( exp ‘ 𝑧 ) − 1 ) ∈ ℂ ) |
178 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
179 |
177 173 178
|
divcld |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ∈ ℂ ) |
180 |
30 179
|
fmpti |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ |
181 |
180
|
a1i |
⊢ ( ⊤ → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) : ( ℂ ∖ { 0 } ) ⟶ ℂ ) |
182 |
|
difssd |
⊢ ( ⊤ → ( ℂ ∖ { 0 } ) ⊆ ℂ ) |
183 |
|
0cnd |
⊢ ( ⊤ → 0 ∈ ℂ ) |
184 |
181 182 183
|
ellimc3 |
⊢ ( ⊤ → ( 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ↔ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) ) ) |
185 |
184
|
mptru |
⊢ ( 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ↔ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ ∀ 𝑤 ∈ ( ℂ ∖ { 0 } ) ( ( 𝑤 ≠ 0 ∧ ( abs ‘ ( 𝑤 − 0 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) ‘ 𝑤 ) − 1 ) ) < 𝑥 ) ) ) |
186 |
8 172 185
|
mpbir2an |
⊢ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) |
187 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
188 |
187
|
toponrestid |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
189 |
173
|
subid1d |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 𝑧 − 0 ) = 𝑧 ) |
190 |
189
|
oveq2d |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) = ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / 𝑧 ) ) |
191 |
|
ef0 |
⊢ ( exp ‘ 0 ) = 1 |
192 |
191
|
oveq2i |
⊢ ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) = ( ( exp ‘ 𝑧 ) − 1 ) |
193 |
192
|
oveq1i |
⊢ ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / 𝑧 ) = ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) |
194 |
190 193
|
eqtr2di |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) = ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) ) |
195 |
194
|
mpteq2ia |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) = ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − ( exp ‘ 0 ) ) / ( 𝑧 − 0 ) ) ) |
196 |
|
ssidd |
⊢ ( ⊤ → ℂ ⊆ ℂ ) |
197 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
198 |
197
|
a1i |
⊢ ( ⊤ → exp : ℂ ⟶ ℂ ) |
199 |
188 2 195 196 198 196
|
eldv |
⊢ ( ⊤ → ( 0 ( ℂ D exp ) 1 ↔ ( 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ) ) ) |
200 |
199
|
mptru |
⊢ ( 0 ( ℂ D exp ) 1 ↔ ( 0 ∈ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ ℂ ) ∧ 1 ∈ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ↦ ( ( ( exp ‘ 𝑧 ) − 1 ) / 𝑧 ) ) limℂ 0 ) ) ) |
201 |
7 186 200
|
mpbir2an |
⊢ 0 ( ℂ D exp ) 1 |