Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Class form not-free predicate dvelimc  
				
		 
		
			
		 
		Description:   Version of dvelim  for classes.  Usage of this theorem is discouraged
       because it depends on ax-13  .  (Contributed by Mario Carneiro , 8-Oct-2016)   (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dvelimc.1 ⊢  Ⅎ  𝑥  𝐴   
					
						dvelimc.2 ⊢  Ⅎ  𝑧  𝐵   
					
						dvelimc.3 ⊢  ( 𝑧   =  𝑦   →  𝐴   =  𝐵  )  
				
					Assertion 
					dvelimc ⊢   ( ¬  ∀ 𝑥  𝑥   =  𝑦   →  Ⅎ  𝑥  𝐵  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dvelimc.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							dvelimc.2 ⊢  Ⅎ  𝑧  𝐵   
						
							3 
								
							 
							dvelimc.3 ⊢  ( 𝑧   =  𝑦   →  𝐴   =  𝐵  )  
						
							4 
								
							 
							nftru ⊢  Ⅎ 𝑥  ⊤  
						
							5 
								
							 
							nftru ⊢  Ⅎ 𝑧  ⊤  
						
							6 
								1 
							 
							a1i ⊢  ( ⊤  →  Ⅎ  𝑥  𝐴  )  
						
							7 
								2 
							 
							a1i ⊢  ( ⊤  →  Ⅎ  𝑧  𝐵  )  
						
							8 
								3 
							 
							a1i ⊢  ( ⊤  →  ( 𝑧   =  𝑦   →  𝐴   =  𝐵  ) )  
						
							9 
								4  5  6  7  8 
							 
							dvelimdc ⊢  ( ⊤  →  ( ¬  ∀ 𝑥  𝑥   =  𝑦   →  Ⅎ  𝑥  𝐵  ) )  
						
							10 
								9 
							 
							mptru ⊢  ( ¬  ∀ 𝑥  𝑥   =  𝑦   →  Ⅎ  𝑥  𝐵  )