Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
dvelimc
Metamath Proof Explorer
Description: Version of dvelim for classes. Usage of this theorem is discouraged
because it depends on ax-13 . (Contributed by Mario Carneiro , 8-Oct-2016) (New usage is discouraged.)
Ref
Expression
Hypotheses
dvelimc.1
⊢ Ⅎ 𝑥 𝐴
dvelimc.2
⊢ Ⅎ 𝑧 𝐵
dvelimc.3
⊢ ( 𝑧 = 𝑦 → 𝐴 = 𝐵 )
Assertion
dvelimc
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
dvelimc.1
⊢ Ⅎ 𝑥 𝐴
2
dvelimc.2
⊢ Ⅎ 𝑧 𝐵
3
dvelimc.3
⊢ ( 𝑧 = 𝑦 → 𝐴 = 𝐵 )
4
nftru
⊢ Ⅎ 𝑥 ⊤
5
nftru
⊢ Ⅎ 𝑧 ⊤
6
1
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 )
7
2
a1i
⊢ ( ⊤ → Ⅎ 𝑧 𝐵 )
8
3
a1i
⊢ ( ⊤ → ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) )
9
4 5 6 7 8
dvelimdc
⊢ ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) )
10
9
mptru
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 )