Metamath Proof Explorer


Theorem dvelimc

Description: Version of dvelim for classes. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimc.1 𝑥 𝐴
dvelimc.2 𝑧 𝐵
dvelimc.3 ( 𝑧 = 𝑦𝐴 = 𝐵 )
Assertion dvelimc ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 dvelimc.1 𝑥 𝐴
2 dvelimc.2 𝑧 𝐵
3 dvelimc.3 ( 𝑧 = 𝑦𝐴 = 𝐵 )
4 nftru 𝑥
5 nftru 𝑧
6 1 a1i ( ⊤ → 𝑥 𝐴 )
7 2 a1i ( ⊤ → 𝑧 𝐵 )
8 3 a1i ( ⊤ → ( 𝑧 = 𝑦𝐴 = 𝐵 ) )
9 4 5 6 7 8 dvelimdc ( ⊤ → ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝐵 ) )
10 9 mptru ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝐵 )