Step |
Hyp |
Ref |
Expression |
1 |
|
dvelimdc.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
dvelimdc.2 |
⊢ Ⅎ 𝑧 𝜑 |
3 |
|
dvelimdc.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
4 |
|
dvelimdc.4 |
⊢ ( 𝜑 → Ⅎ 𝑧 𝐵 ) |
5 |
|
dvelimdc.5 |
⊢ ( 𝜑 → ( 𝑧 = 𝑦 → 𝐴 = 𝐵 ) ) |
6 |
|
nfv |
⊢ Ⅎ 𝑤 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
7 |
3
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑤 ∈ 𝐴 ) |
8 |
4
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑧 𝑤 ∈ 𝐵 ) |
9 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵 ) ) |
10 |
5 9
|
syl6 |
⊢ ( 𝜑 → ( 𝑧 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ 𝐵 ) ) ) |
11 |
1 2 7 8 10
|
dvelimdf |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ∈ 𝐵 ) ) |
12 |
11
|
imp |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑤 ∈ 𝐵 ) |
13 |
6 12
|
nfcd |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝐵 ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝐵 ) ) |