| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvelimdf.1 |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
dvelimdf.2 |
⊢ Ⅎ 𝑧 𝜑 |
| 3 |
|
dvelimdf.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
| 4 |
|
dvelimdf.4 |
⊢ ( 𝜑 → Ⅎ 𝑧 𝜒 ) |
| 5 |
|
dvelimdf.5 |
⊢ ( 𝜑 → ( 𝑧 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 6 |
1 3
|
nfim1 |
⊢ Ⅎ 𝑥 ( 𝜑 → 𝜓 ) |
| 7 |
2 4
|
nfim1 |
⊢ Ⅎ 𝑧 ( 𝜑 → 𝜒 ) |
| 8 |
5
|
com12 |
⊢ ( 𝑧 = 𝑦 → ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) ) |
| 9 |
8
|
pm5.74d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 10 |
6 7 9
|
dvelimf |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝜑 → 𝜒 ) ) |
| 11 |
|
pm5.5 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜒 ) ↔ 𝜒 ) ) |
| 12 |
1 11
|
nfbidf |
⊢ ( 𝜑 → ( Ⅎ 𝑥 ( 𝜑 → 𝜒 ) ↔ Ⅎ 𝑥 𝜒 ) ) |
| 13 |
10 12
|
imbitrid |
⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜒 ) ) |