Metamath Proof Explorer


Theorem dvelimf-o

Description: Proof of dvelimh that uses ax-c11 but not ax-c15 , ax-c11n , or ax-12 . Version of dvelimh using ax-c11 instead of axc11 . (Contributed by NM, 12-Nov-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimf-o.1 ( 𝜑 → ∀ 𝑥 𝜑 )
dvelimf-o.2 ( 𝜓 → ∀ 𝑧 𝜓 )
dvelimf-o.3 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
Assertion dvelimf-o ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 dvelimf-o.1 ( 𝜑 → ∀ 𝑥 𝜑 )
2 dvelimf-o.2 ( 𝜓 → ∀ 𝑧 𝜓 )
3 dvelimf-o.3 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
4 hba1-o ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑧𝑧 ( 𝑧 = 𝑦𝜑 ) )
5 ax-c11 ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) )
6 5 aecoms-o ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) )
7 4 6 syl5 ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) )
8 7 a1d ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) ) )
9 hbnae-o ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 )
10 hbnae-o ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 )
11 9 10 hban ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) )
12 hbnae-o ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 )
13 hbnae-o ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 )
14 12 13 hban ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) )
15 ax-c9 ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) )
16 15 imp ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) )
17 1 a1i ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) )
18 14 16 17 hbimd ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥 ( 𝑧 = 𝑦𝜑 ) ) )
19 11 18 hbald ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) )
20 19 ex ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) ) )
21 8 20 pm2.61i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) → ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ) )
22 2 3 equsalh ( ∀ 𝑧 ( 𝑧 = 𝑦𝜑 ) ↔ 𝜓 )
23 22 albii ( ∀ 𝑥𝑧 ( 𝑧 = 𝑦𝜑 ) ↔ ∀ 𝑥 𝜓 )
24 21 22 23 3imtr3g ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) )