| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvelimf-o.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
| 2 |
|
dvelimf-o.2 |
⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) |
| 3 |
|
dvelimf-o.3 |
⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
hba1-o |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 5 |
|
ax-c11 |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 6 |
5
|
aecoms-o |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 7 |
4 6
|
syl5 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 8 |
7
|
a1d |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) ) |
| 9 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 10 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 11 |
9 10
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 12 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 13 |
|
hbnae-o |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 14 |
12 13
|
hban |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ∀ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) ) |
| 15 |
|
ax-c9 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝑧 = 𝑦 → ∀ 𝑥 𝑧 = 𝑦 ) ) |
| 17 |
1
|
a1i |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 18 |
14 16 17
|
hbimd |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 19 |
11 18
|
hbald |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 20 |
19
|
ex |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) ) |
| 21 |
8 20
|
pm2.61i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) → ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) ) |
| 22 |
2 3
|
equsalh |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ 𝜓 ) |
| 23 |
22
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ ∀ 𝑥 𝜓 ) |
| 24 |
21 22 23
|
3imtr3g |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |