| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvelimhw.1 |
⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) |
| 2 |
|
dvelimhw.2 |
⊢ ( 𝜓 → ∀ 𝑧 𝜓 ) |
| 3 |
|
dvelimhw.3 |
⊢ ( 𝑧 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
dvelimhw.4 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑦 = 𝑧 → ∀ 𝑥 𝑦 = 𝑧 ) ) |
| 5 |
|
nfv |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 6 |
|
equcom |
⊢ ( 𝑧 = 𝑦 ↔ 𝑦 = 𝑧 ) |
| 7 |
|
nfna1 |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 |
| 8 |
7 4
|
nf5d |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
| 9 |
6 8
|
nfxfrd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 10 |
1
|
nf5i |
⊢ Ⅎ 𝑥 𝜑 |
| 11 |
10
|
a1i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 ) |
| 12 |
9 11
|
nfimd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 13 |
5 12
|
nfald |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ) |
| 14 |
2 3
|
equsalhw |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ 𝜓 ) |
| 15 |
14
|
nfbii |
⊢ ( Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 = 𝑦 → 𝜑 ) ↔ Ⅎ 𝑥 𝜓 ) |
| 16 |
13 15
|
sylib |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 ) |
| 17 |
16
|
nf5rd |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝜓 → ∀ 𝑥 𝜓 ) ) |