Metamath Proof Explorer


Theorem dvelimnf

Description: Version of dvelim using "not free" notation. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimnf.1 𝑥 𝜑
dvelimnf.2 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
Assertion dvelimnf ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 )

Proof

Step Hyp Ref Expression
1 dvelimnf.1 𝑥 𝜑
2 dvelimnf.2 ( 𝑧 = 𝑦 → ( 𝜑𝜓 ) )
3 nfv 𝑧 𝜓
4 1 3 2 dvelimf ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜓 )