| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dveq0.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | dveq0.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | dveq0.c | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | 
						
							| 4 |  | dveq0.d | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 )  =  ( ( 𝐴 (,) 𝐵 )  ×  { 0 } ) ) | 
						
							| 5 |  | cncff | ⊢ ( 𝐹  ∈  ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝜑  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 7 | 6 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 8 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 9 |  | fnconstg | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  V  →  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 10 | 8 9 | mp1i | ⊢ ( 𝜑  →  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } )  Fn  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 11 | 8 | fvconst2 | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 15 | 14 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 16 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 17 | 16 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐵  ∈  ℝ* ) | 
						
							| 18 |  | elicc2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 19 | 1 2 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 )  ↔  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) ) | 
						
							| 20 | 19 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝑥  ∈  ℝ  ∧  𝐴  ≤  𝑥  ∧  𝑥  ≤  𝐵 ) ) | 
						
							| 21 | 20 | simp1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 22 | 20 | simp2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝑥 ) | 
						
							| 23 | 20 | simp3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ≤  𝐵 ) | 
						
							| 24 | 14 21 16 22 23 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ≤  𝐵 ) | 
						
							| 25 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 26 | 15 17 24 25 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 27 | 13 26 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 28 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 29 | 27 28 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 31 | 26 30 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) ) | 
						
							| 32 | 4 | dmeqd | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  =  dom  ( ( 𝐴 (,) 𝐵 )  ×  { 0 } ) ) | 
						
							| 33 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 34 | 33 | snnz | ⊢ { 0 }  ≠  ∅ | 
						
							| 35 |  | dmxp | ⊢ ( { 0 }  ≠  ∅  →  dom  ( ( 𝐴 (,) 𝐵 )  ×  { 0 } )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 36 | 34 35 | ax-mp | ⊢ dom  ( ( 𝐴 (,) 𝐵 )  ×  { 0 } )  =  ( 𝐴 (,) 𝐵 ) | 
						
							| 37 | 32 36 | eqtrdi | ⊢ ( 𝜑  →  dom  ( ℝ  D  𝐹 )  =  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 38 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 39 | 4 | fveq1d | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  =  ( ( ( 𝐴 (,) 𝐵 )  ×  { 0 } ) ‘ 𝑦 ) ) | 
						
							| 40 | 33 | fvconst2 | ⊢ ( 𝑦  ∈  ( 𝐴 (,) 𝐵 )  →  ( ( ( 𝐴 (,) 𝐵 )  ×  { 0 } ) ‘ 𝑦 )  =  0 ) | 
						
							| 41 | 39 40 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( ( ℝ  D  𝐹 ) ‘ 𝑦 )  =  0 ) | 
						
							| 42 | 41 | abs00bd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  =  0 ) | 
						
							| 43 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 44 | 42 43 | eqbrtrdi | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( 𝐴 (,) 𝐵 ) )  →  ( abs ‘ ( ( ℝ  D  𝐹 ) ‘ 𝑦 ) )  ≤  0 ) | 
						
							| 45 | 1 2 3 37 38 44 | dvlip | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑥 ) ) ) ) | 
						
							| 46 | 31 45 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑥 ) ) ) ) | 
						
							| 47 | 14 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 48 | 21 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 49 | 47 48 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴  −  𝑥 )  ∈  ℂ ) | 
						
							| 50 | 49 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( 𝐴  −  𝑥 ) )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( 𝐴  −  𝑥 ) )  ∈  ℂ ) | 
						
							| 52 | 51 | mul02d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 0  ·  ( abs ‘ ( 𝐴  −  𝑥 ) ) )  =  0 ) | 
						
							| 53 | 46 52 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  0 ) | 
						
							| 54 | 29 | absge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  0  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 55 | 29 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 56 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 57 |  | letri3 | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 58 | 55 56 57 | sylancl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  0  ↔  ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  ≤  0  ∧  0  ≤  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 59 | 53 54 58 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( abs ‘ ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) ) )  =  0 ) | 
						
							| 60 | 29 59 | abs00d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( ( 𝐹 ‘ 𝐴 )  −  ( 𝐹 ‘ 𝑥 ) )  =  0 ) | 
						
							| 61 | 27 28 60 | subeq0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 62 | 12 61 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) ) | 
						
							| 63 | 7 10 62 | eqfnfvd | ⊢ ( 𝜑  →  𝐹  =  ( ( 𝐴 [,] 𝐵 )  ×  { ( 𝐹 ‘ 𝐴 ) } ) ) |