Step |
Hyp |
Ref |
Expression |
1 |
|
dveq0.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dveq0.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
dveq0.c |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
4 |
|
dveq0.d |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) = ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) |
5 |
|
cncff |
⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
7 |
6
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( 𝐴 [,] 𝐵 ) ) |
8 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
9 |
|
fnconstg |
⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ V → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
10 |
8 9
|
mp1i |
⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) Fn ( 𝐴 [,] 𝐵 ) ) |
11 |
8
|
fvconst2 |
⊢ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) |
14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ ) |
15 |
14
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
16 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ ) |
17 |
16
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
18 |
|
elicc2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
19 |
1 2 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵 ) ) |
21 |
20
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℝ ) |
22 |
20
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝑥 ) |
23 |
20
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
24 |
14 21 16 22 23
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ≤ 𝐵 ) |
25 |
|
lbicc2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
26 |
15 17 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
27 |
13 26
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
28 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
29 |
27 28
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
31 |
26 30
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) |
32 |
4
|
dmeqd |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ) |
33 |
|
c0ex |
⊢ 0 ∈ V |
34 |
33
|
snnz |
⊢ { 0 } ≠ ∅ |
35 |
|
dmxp |
⊢ ( { 0 } ≠ ∅ → dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝐴 (,) 𝐵 ) ) |
36 |
34 35
|
ax-mp |
⊢ dom ( ( 𝐴 (,) 𝐵 ) × { 0 } ) = ( 𝐴 (,) 𝐵 ) |
37 |
32 36
|
eqtrdi |
⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = ( 𝐴 (,) 𝐵 ) ) |
38 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
39 |
4
|
fveq1d |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = ( ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ‘ 𝑦 ) ) |
40 |
33
|
fvconst2 |
⊢ ( 𝑦 ∈ ( 𝐴 (,) 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) × { 0 } ) ‘ 𝑦 ) = 0 ) |
41 |
39 40
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑦 ) = 0 ) |
42 |
41
|
abs00bd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) = 0 ) |
43 |
|
0le0 |
⊢ 0 ≤ 0 |
44 |
42 43
|
eqbrtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ) → ( abs ‘ ( ( ℝ D 𝐹 ) ‘ 𝑦 ) ) ≤ 0 ) |
45 |
1 2 3 37 38 44
|
dvlip |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) ) |
46 |
31 45
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) ) |
47 |
14
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐴 ∈ ℂ ) |
48 |
21
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
49 |
47 48
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐴 − 𝑥 ) ∈ ℂ ) |
50 |
49
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐴 − 𝑥 ) ) ∈ ℝ ) |
51 |
50
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( 𝐴 − 𝑥 ) ) ∈ ℂ ) |
52 |
51
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 0 · ( abs ‘ ( 𝐴 − 𝑥 ) ) ) = 0 ) |
53 |
46 52
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ) |
54 |
29
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) |
55 |
29
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ) |
56 |
|
0re |
⊢ 0 ∈ ℝ |
57 |
|
letri3 |
⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
58 |
55 56 57
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ↔ ( ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ≤ 0 ∧ 0 ≤ ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) ) ) ) |
59 |
53 54 58
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) ) = 0 ) |
60 |
29 59
|
abs00d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝐹 ‘ 𝐴 ) − ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
61 |
27 28 60
|
subeq0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝑥 ) ) |
62 |
12 61
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ‘ 𝑥 ) ) |
63 |
7 10 62
|
eqfnfvd |
⊢ ( 𝜑 → 𝐹 = ( ( 𝐴 [,] 𝐵 ) × { ( 𝐹 ‘ 𝐴 ) } ) ) |