Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 1 ) ) |
2 |
1
|
mpteq2dv |
⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑛 = 1 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) ) |
4 |
|
id |
⊢ ( 𝑛 = 1 → 𝑛 = 1 ) |
5 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑛 = 1 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 1 − 1 ) ) ) |
7 |
4 6
|
oveq12d |
⊢ ( 𝑛 = 1 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
8 |
7
|
mpteq2dv |
⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) |
9 |
3 8
|
eqeq12d |
⊢ ( 𝑛 = 1 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) ) |
10 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) |
11 |
10
|
mpteq2dv |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) |
13 |
|
id |
⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) |
14 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 − 1 ) = ( 𝑘 − 1 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) |
16 |
13 15
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
18 |
12 17
|
eqeq12d |
⊢ ( 𝑛 = 𝑘 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
22 |
|
id |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) |
25 |
22 24
|
oveq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
26 |
25
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
27 |
21 26
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) |
29 |
28
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
30 |
29
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) ) |
31 |
|
id |
⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) |
32 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) |
34 |
31 33
|
oveq12d |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) |
35 |
34
|
mpteq2dv |
⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
36 |
30 35
|
eqeq12d |
⊢ ( 𝑛 = 𝑁 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
37 |
|
exp1 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 1 ) = 𝑥 ) |
38 |
37
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
39 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
40 |
38 39
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( I ↾ ℂ ) |
41 |
40
|
oveq2i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
42 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
43 |
42
|
oveq2i |
⊢ ( 𝑥 ↑ ( 1 − 1 ) ) = ( 𝑥 ↑ 0 ) |
44 |
|
exp0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) |
45 |
43 44
|
syl5eq |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ ( 1 − 1 ) ) = 1 ) |
46 |
45
|
oveq2d |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = ( 1 · 1 ) ) |
47 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
48 |
46 47
|
eqtrdi |
⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = 1 ) |
49 |
48
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
50 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
51 |
49 50
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ × { 1 } ) |
52 |
|
dvid |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) |
53 |
51 52
|
eqtr4i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
54 |
41 53
|
eqtr4i |
⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
55 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
56 |
55
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑘 ∈ ℂ ) |
57 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
58 |
|
pncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
59 |
56 57 58
|
sylancl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
60 |
59
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
61 |
60
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) ) |
62 |
57
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
63 |
|
id |
⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) |
64 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
65 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
66 |
63 64 65
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
67 |
56 62 66
|
adddird |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
68 |
66
|
mulid2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 1 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
69 |
68
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
70 |
61 67 69
|
3eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
71 |
70
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
72 |
|
cnex |
⊢ ℂ ∈ V |
73 |
72
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ℂ ∈ V ) |
74 |
56 66
|
mulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
75 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
76 |
|
expcl |
⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
77 |
63 75 76
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
78 |
56 77
|
mulcld |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
79 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
80 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
81 |
39
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) |
82 |
73 78 79 80 81
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) ) |
83 |
56 77 79
|
mulassd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
84 |
|
expm1t |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) |
85 |
84
|
ancoms |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) |
86 |
85
|
oveq2d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
87 |
83 86
|
eqtr4d |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) |
88 |
87
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
89 |
82 88
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
90 |
52 50
|
eqtri |
⊢ ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
91 |
90
|
a1i |
⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
92 |
|
eqidd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
93 |
73 62 66 91 92
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
94 |
68
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
95 |
93 94
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
96 |
73 74 66 89 95
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
97 |
71 96
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
98 |
|
oveq1 |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ) |
99 |
98
|
oveq1d |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
100 |
99
|
eqcomd |
⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
101 |
97 100
|
sylan9eq |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
102 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
103 |
102
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ℂ ∈ { ℝ , ℂ } ) |
104 |
66
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
105 |
104
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
106 |
|
f1oi |
⊢ ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ |
107 |
|
f1of |
⊢ ( ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
108 |
106 107
|
mp1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
109 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
110 |
109
|
dmeqd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
111 |
78
|
fmpttd |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
112 |
111
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
113 |
112
|
fdmd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ℂ ) |
114 |
110 113
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ℂ ) |
115 |
|
1ex |
⊢ 1 ∈ V |
116 |
115
|
fconst |
⊢ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } |
117 |
52
|
feq1i |
⊢ ( ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } ↔ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } ) |
118 |
116 117
|
mpbir |
⊢ ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } |
119 |
118
|
fdmi |
⊢ dom ( ℂ D ( I ↾ ℂ ) ) = ℂ |
120 |
119
|
a1i |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( I ↾ ℂ ) ) = ℂ ) |
121 |
103 105 108 114 120
|
dvmulf |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
122 |
73 66 79 92 81
|
offval2 |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
123 |
|
expp1 |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) |
124 |
63 64 123
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) |
125 |
124
|
mpteq2dva |
⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
126 |
122 125
|
eqtr4d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
127 |
126
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
128 |
127
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
129 |
101 121 128
|
3eqtr2rd |
⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
130 |
129
|
ex |
⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
131 |
9 18 27 36 54 130
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |