Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
dvexp |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
3 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
4 |
3
|
neneqd |
⊢ ( 𝑁 ∈ ℕ → ¬ 𝑁 = 0 ) |
5 |
4
|
iffalsed |
⊢ ( 𝑁 ∈ ℕ → if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) = ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑁 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
7 |
2 6
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
8 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑥 ↑ 𝑁 ) = ( 𝑥 ↑ 0 ) ) |
9 |
|
exp0 |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) |
10 |
8 9
|
sylan9eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑁 ) = 1 ) |
11 |
10
|
mpteq2dva |
⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
12 |
|
fconstmpt |
⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
13 |
11 12
|
eqtr4di |
⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) = ( ℂ × { 1 } ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( ℂ D ( ℂ × { 1 } ) ) ) |
15 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
16 |
|
dvconst |
⊢ ( 1 ∈ ℂ → ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ℂ D ( ℂ × { 1 } ) ) = ( ℂ × { 0 } ) |
18 |
14 17
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( ℂ × { 0 } ) ) |
19 |
|
fconstmpt |
⊢ ( ℂ × { 0 } ) = ( 𝑥 ∈ ℂ ↦ 0 ) |
20 |
18 19
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
21 |
|
iftrue |
⊢ ( 𝑁 = 0 → if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) = 0 ) |
22 |
21
|
mpteq2dv |
⊢ ( 𝑁 = 0 → ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
23 |
20 22
|
eqtr4d |
⊢ ( 𝑁 = 0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
24 |
7 23
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
25 |
1 24
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ if ( 𝑁 = 0 , 0 , ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |