Metamath Proof Explorer


Theorem dvf

Description: The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvf ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ

Proof

Step Hyp Ref Expression
1 reelprrecn ℝ ∈ { ℝ , ℂ }
2 dvfg ( ℝ ∈ { ℝ , ℂ } → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ )
3 1 2 ax-mp ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ