Step |
Hyp |
Ref |
Expression |
1 |
|
dvferm.a |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
2 |
|
dvferm.b |
⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
3 |
|
dvferm.u |
⊢ ( 𝜑 → 𝑈 ∈ ( 𝐴 (,) 𝐵 ) ) |
4 |
|
dvferm.s |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ 𝑋 ) |
5 |
|
dvferm.d |
⊢ ( 𝜑 → 𝑈 ∈ dom ( ℝ D 𝐹 ) ) |
6 |
|
dvferm.r |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
7 |
|
ne0i |
⊢ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 (,) 𝐵 ) ≠ ∅ ) |
8 |
|
ndmioo |
⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
9 |
8
|
necon1ai |
⊢ ( ( 𝐴 (,) 𝐵 ) ≠ ∅ → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
10 |
3 7 9
|
3syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ) |
11 |
10
|
simpld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
12 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
13 |
12 3
|
sselid |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
14 |
13
|
rexrd |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
15 |
|
eliooord |
⊢ ( 𝑈 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝑈 ∧ 𝑈 < 𝐵 ) ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → ( 𝐴 < 𝑈 ∧ 𝑈 < 𝐵 ) ) |
17 |
16
|
simpld |
⊢ ( 𝜑 → 𝐴 < 𝑈 ) |
18 |
11 14 17
|
xrltled |
⊢ ( 𝜑 → 𝐴 ≤ 𝑈 ) |
19 |
|
iooss1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 𝑈 ) → ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
20 |
11 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
21 |
|
ssralv |
⊢ ( ( 𝑈 (,) 𝐵 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) |
22 |
20 6 21
|
sylc |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
23 |
1 2 3 4 5 22
|
dvferm1 |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ) |
24 |
10
|
simprd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
25 |
16
|
simprd |
⊢ ( 𝜑 → 𝑈 < 𝐵 ) |
26 |
14 24 25
|
xrltled |
⊢ ( 𝜑 → 𝑈 ≤ 𝐵 ) |
27 |
|
iooss2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑈 ≤ 𝐵 ) → ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
28 |
24 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) ) |
29 |
|
ssralv |
⊢ ( ( 𝐴 (,) 𝑈 ) ⊆ ( 𝐴 (,) 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) → ∀ 𝑦 ∈ ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) ) |
30 |
28 6 29
|
sylc |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑈 ) ) |
31 |
1 2 3 4 5 30
|
dvferm2 |
⊢ ( 𝜑 → 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) |
32 |
|
dvfre |
⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ 𝑋 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
33 |
1 2 32
|
syl2anc |
⊢ ( 𝜑 → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |
34 |
33 5
|
ffvelrnd |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ∈ ℝ ) |
35 |
|
0re |
⊢ 0 ∈ ℝ |
36 |
|
letri3 |
⊢ ( ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) ) ) |
37 |
34 35 36
|
sylancl |
⊢ ( 𝜑 → ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ↔ ( ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ≤ 0 ∧ 0 ≤ ( ( ℝ D 𝐹 ) ‘ 𝑈 ) ) ) ) |
38 |
23 31 37
|
mpbir2and |
⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ‘ 𝑈 ) = 0 ) |