| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvferm.a | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ ℝ ) | 
						
							| 2 |  | dvferm.b | ⊢ ( 𝜑  →  𝑋  ⊆  ℝ ) | 
						
							| 3 |  | dvferm.u | ⊢ ( 𝜑  →  𝑈  ∈  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 4 |  | dvferm.s | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝐵 )  ⊆  𝑋 ) | 
						
							| 5 |  | dvferm.d | ⊢ ( 𝜑  →  𝑈  ∈  dom  ( ℝ  D  𝐹 ) ) | 
						
							| 6 |  | dvferm.r | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 ) ) | 
						
							| 7 |  | ne0i | ⊢ ( 𝑈  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴 (,) 𝐵 )  ≠  ∅ ) | 
						
							| 8 |  | ndmioo | ⊢ ( ¬  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* )  →  ( 𝐴 (,) 𝐵 )  =  ∅ ) | 
						
							| 9 | 8 | necon1ai | ⊢ ( ( 𝐴 (,) 𝐵 )  ≠  ∅  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 10 | 3 7 9 | 3syl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ* ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 12 |  | ioossre | ⊢ ( 𝐴 (,) 𝐵 )  ⊆  ℝ | 
						
							| 13 | 12 3 | sselid | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 14 | 13 | rexrd | ⊢ ( 𝜑  →  𝑈  ∈  ℝ* ) | 
						
							| 15 |  | eliooord | ⊢ ( 𝑈  ∈  ( 𝐴 (,) 𝐵 )  →  ( 𝐴  <  𝑈  ∧  𝑈  <  𝐵 ) ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  ( 𝐴  <  𝑈  ∧  𝑈  <  𝐵 ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( 𝜑  →  𝐴  <  𝑈 ) | 
						
							| 18 | 11 14 17 | xrltled | ⊢ ( 𝜑  →  𝐴  ≤  𝑈 ) | 
						
							| 19 |  | iooss1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≤  𝑈 )  →  ( 𝑈 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 20 | 11 18 19 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 21 |  | ssralv | ⊢ ( ( 𝑈 (,) 𝐵 )  ⊆  ( 𝐴 (,) 𝐵 )  →  ( ∀ 𝑦  ∈  ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 )  →  ∀ 𝑦  ∈  ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 ) ) ) | 
						
							| 22 | 20 6 21 | sylc | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝑈 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 ) ) | 
						
							| 23 | 1 2 3 4 5 22 | dvferm1 | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  ≤  0 ) | 
						
							| 24 | 10 | simprd | ⊢ ( 𝜑  →  𝐵  ∈  ℝ* ) | 
						
							| 25 | 16 | simprd | ⊢ ( 𝜑  →  𝑈  <  𝐵 ) | 
						
							| 26 | 14 24 25 | xrltled | ⊢ ( 𝜑  →  𝑈  ≤  𝐵 ) | 
						
							| 27 |  | iooss2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝑈  ≤  𝐵 )  →  ( 𝐴 (,) 𝑈 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 28 | 24 26 27 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 (,) 𝑈 )  ⊆  ( 𝐴 (,) 𝐵 ) ) | 
						
							| 29 |  | ssralv | ⊢ ( ( 𝐴 (,) 𝑈 )  ⊆  ( 𝐴 (,) 𝐵 )  →  ( ∀ 𝑦  ∈  ( 𝐴 (,) 𝐵 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 )  →  ∀ 𝑦  ∈  ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 ) ) ) | 
						
							| 30 | 28 6 29 | sylc | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝐴 (,) 𝑈 ) ( 𝐹 ‘ 𝑦 )  ≤  ( 𝐹 ‘ 𝑈 ) ) | 
						
							| 31 | 1 2 3 4 5 30 | dvferm2 | ⊢ ( 𝜑  →  0  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑈 ) ) | 
						
							| 32 |  | dvfre | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ  ∧  𝑋  ⊆  ℝ )  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 33 | 1 2 32 | syl2anc | ⊢ ( 𝜑  →  ( ℝ  D  𝐹 ) : dom  ( ℝ  D  𝐹 ) ⟶ ℝ ) | 
						
							| 34 | 33 5 | ffvelcdmd | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  ∈  ℝ ) | 
						
							| 35 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 36 |  | letri3 | ⊢ ( ( ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  =  0  ↔  ( ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  ≤  0  ∧  0  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑈 ) ) ) ) | 
						
							| 37 | 34 35 36 | sylancl | ⊢ ( 𝜑  →  ( ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  =  0  ↔  ( ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  ≤  0  ∧  0  ≤  ( ( ℝ  D  𝐹 ) ‘ 𝑈 ) ) ) ) | 
						
							| 38 | 23 31 37 | mpbir2and | ⊢ ( 𝜑  →  ( ( ℝ  D  𝐹 ) ‘ 𝑈 )  =  0 ) |