Description: Explicitly write out the functionality condition on derivative for S = RR and CC . (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
2 | 1 | recnperf | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Perf ) |
3 | 1 | perfdvf | ⊢ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |
4 | 2 3 | syl | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ ) |