Metamath Proof Explorer


Theorem dvfg

Description: Explicitly write out the functionality condition on derivative for S = RR and CC . (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvfg ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ )

Proof

Step Hyp Ref Expression
1 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
2 1 recnperf ( 𝑆 ∈ { ℝ , ℂ } → ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Perf )
3 1 perfdvf ( ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ∈ Perf → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ )
4 2 3 syl ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D 𝐹 ) : dom ( 𝑆 D 𝐹 ) ⟶ ℂ )