Step |
Hyp |
Ref |
Expression |
1 |
|
dvf |
⊢ ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ |
2 |
|
ffn |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) |
3 |
1 2
|
mp1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ) |
4 |
1
|
ffvelrni |
⊢ ( 𝑥 ∈ dom ( ℝ D 𝐹 ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℂ ) |
6 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → 𝑥 ∈ dom ( ℝ D 𝐹 ) ) |
7 |
|
fvco3 |
⊢ ( ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℂ ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
8 |
1 6 7
|
sylancr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) ) |
9 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
10 |
|
fss |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) |
11 |
9 10
|
mpan2 |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℂ ) |
12 |
|
dvcj |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |
13 |
11 12
|
sylan |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ∗ ∘ ( ℝ D 𝐹 ) ) ) |
14 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
15 |
14
|
adantlr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
16 |
15
|
cjred |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) = ( 𝐹 ‘ 𝑦 ) ) |
17 |
16
|
mpteq2dva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( 𝑦 ∈ 𝐴 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
18 |
15
|
recnd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℂ ) |
19 |
|
simpl |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 : 𝐴 ⟶ ℝ ) |
20 |
19
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → 𝐹 = ( 𝑦 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑦 ) ) ) |
21 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
22 |
21
|
a1i |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∗ : ℂ ⟶ ℂ ) |
23 |
22
|
feqmptd |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∗ = ( 𝑧 ∈ ℂ ↦ ( ∗ ‘ 𝑧 ) ) ) |
24 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑦 ) → ( ∗ ‘ 𝑧 ) = ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
18 20 23 24
|
fmptco |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = ( 𝑦 ∈ 𝐴 ↦ ( ∗ ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
26 |
17 25 20
|
3eqtr4d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ 𝐹 ) = 𝐹 ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D ( ∗ ∘ 𝐹 ) ) = ( ℝ D 𝐹 ) ) |
28 |
13 27
|
eqtr3d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ∗ ∘ ( ℝ D 𝐹 ) ) = ( ℝ D 𝐹 ) ) |
29 |
28
|
fveq1d |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ∗ ∘ ( ℝ D 𝐹 ) ) ‘ 𝑥 ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
31 |
8 30
|
eqtr3d |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ∗ ‘ ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) = ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ) |
32 |
5 31
|
cjrebd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) ∧ 𝑥 ∈ dom ( ℝ D 𝐹 ) ) → ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ∀ 𝑥 ∈ dom ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) |
34 |
|
ffnfv |
⊢ ( ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ↔ ( ( ℝ D 𝐹 ) Fn dom ( ℝ D 𝐹 ) ∧ ∀ 𝑥 ∈ dom ( ℝ D 𝐹 ) ( ( ℝ D 𝐹 ) ‘ 𝑥 ) ∈ ℝ ) ) |
35 |
3 33 34
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ⊆ ℝ ) → ( ℝ D 𝐹 ) : dom ( ℝ D 𝐹 ) ⟶ ℝ ) |