| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsumleOLD.m |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
dvfsumleOLD.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 3 |
|
dvfsumleOLD.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvfsumleOLD.b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 5 |
|
dvfsumleOLD.c |
⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) |
| 6 |
|
dvfsumleOLD.d |
⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) |
| 7 |
|
dvfsumleOLD.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
| 8 |
|
dvfsumge.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝐵 ≤ 𝑋 ) |
| 9 |
|
df-neg |
⊢ - 𝐴 = ( 0 − 𝐴 ) |
| 10 |
9
|
mpteq2i |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ - 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 0 − 𝐴 ) ) |
| 11 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 12 |
11
|
subcn |
⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 14 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 15 |
1 14
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 16 |
15
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 17 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 18 |
1 17
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 19 |
18
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 20 |
|
iccssre |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 21 |
16 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 22 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 23 |
21 22
|
sstrdi |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
| 24 |
22
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 25 |
|
cncfmptc |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 [,] 𝑁 ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 0 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 26 |
13 23 24 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 0 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 27 |
|
resubcl |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 − 𝐴 ) ∈ ℝ ) |
| 28 |
11 12 26 2 22 27
|
cncfmpt2ss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ ( 0 − 𝐴 ) ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 29 |
10 28
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ - 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 30 |
|
negex |
⊢ - 𝐵 ∈ V |
| 31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → - 𝐵 ∈ V ) |
| 32 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 34 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
| 35 |
34
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 36 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 37 |
2 36
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 38 |
37
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 39 |
35 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℂ ) |
| 41 |
33 40 3 4
|
dvmptneg |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ - 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ - 𝐵 ) ) |
| 42 |
5
|
negeqd |
⊢ ( 𝑥 = 𝑀 → - 𝐴 = - 𝐶 ) |
| 43 |
6
|
negeqd |
⊢ ( 𝑥 = 𝑁 → - 𝐴 = - 𝐷 ) |
| 44 |
7
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → - 𝑋 ∈ ℝ ) |
| 45 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 46 |
45
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
| 47 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) |
| 48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
| 49 |
|
iooss1 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 50 |
46 48 49
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 51 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 52 |
51
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 53 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 55 |
|
elfzle2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 57 |
|
iooss2 |
⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 58 |
52 56 57
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 59 |
50 58
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 60 |
59
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) |
| 61 |
38
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 62 |
35 61
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 63 |
62
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 64 |
|
ioossre |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ |
| 65 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 66 |
63 64 65
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 68 |
67
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 69 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 70 |
69
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
| 71 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 72 |
70 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 73 |
68 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 74 |
67 73
|
feq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 75 |
66 74
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 76 |
75
|
fvmptelcdm |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ ℝ ) |
| 77 |
60 76
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝐵 ∈ ℝ ) |
| 78 |
77
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 79 |
7
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ∈ ℝ ) |
| 80 |
78 79
|
lenegd |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → ( 𝐵 ≤ 𝑋 ↔ - 𝑋 ≤ - 𝐵 ) ) |
| 81 |
8 80
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → - 𝑋 ≤ - 𝐵 ) |
| 82 |
1 29 31 41 42 43 44 81
|
dvfsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) - 𝑋 ≤ ( - 𝐷 − - 𝐶 ) ) |
| 83 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
| 84 |
83
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 85 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 86 |
84 85
|
fsumneg |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) - 𝑋 = - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ) |
| 87 |
6
|
eleq1d |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ∈ ℝ ↔ 𝐷 ∈ ℝ ) ) |
| 88 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) |
| 89 |
88
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 90 |
37 89
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 91 |
16
|
rexrd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ* ) |
| 92 |
19
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
| 93 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
| 94 |
1 93
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 95 |
|
ubicc2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑁 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 96 |
91 92 94 95
|
syl3anc |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 97 |
87 90 96
|
rspcdva |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 98 |
97
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 99 |
5
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( 𝐴 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
| 100 |
|
lbicc2 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑁 ∈ ℝ* ∧ 𝑀 ≤ 𝑁 ) → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 101 |
91 92 94 100
|
syl3anc |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 102 |
99 90 101
|
rspcdva |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 103 |
102
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 104 |
98 103
|
neg2subd |
⊢ ( 𝜑 → ( - 𝐷 − - 𝐶 ) = ( 𝐶 − 𝐷 ) ) |
| 105 |
98 103
|
negsubdi2d |
⊢ ( 𝜑 → - ( 𝐷 − 𝐶 ) = ( 𝐶 − 𝐷 ) ) |
| 106 |
104 105
|
eqtr4d |
⊢ ( 𝜑 → ( - 𝐷 − - 𝐶 ) = - ( 𝐷 − 𝐶 ) ) |
| 107 |
82 86 106
|
3brtr3d |
⊢ ( 𝜑 → - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ - ( 𝐷 − 𝐶 ) ) |
| 108 |
97 102
|
resubcld |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ∈ ℝ ) |
| 109 |
84 7
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ∈ ℝ ) |
| 110 |
108 109
|
lenegd |
⊢ ( 𝜑 → ( ( 𝐷 − 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ↔ - Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ - ( 𝐷 − 𝐶 ) ) ) |
| 111 |
107 110
|
mpbird |
⊢ ( 𝜑 → ( 𝐷 − 𝐶 ) ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ) |