Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsumle.m |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
dvfsumle.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
3 |
|
dvfsumle.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvfsumle.b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
5 |
|
dvfsumle.c |
⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) |
6 |
|
dvfsumle.d |
⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) |
7 |
|
dvfsumle.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
8 |
|
dvfsumle.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ≤ 𝐵 ) |
9 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
15 |
|
fzval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
17 |
|
inss1 |
⊢ ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ⊆ ( 𝑀 [,] 𝑁 ) |
18 |
16 17
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
20 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) |
23 |
22
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
24 |
21 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
25 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
26 |
25
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ |
27 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
28 |
27
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
29 |
26 28
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
30 |
24 29
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
31 |
19 30
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
33 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
34 |
|
csbeq1 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ) |
35 |
34
|
eleq1d |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
36 |
35
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
37 |
32 33 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
38 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
39 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑘 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) |
40 |
39
|
eleq1d |
⊢ ( 𝑦 = 𝑘 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
41 |
40
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
42 |
32 38 41
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
43 |
37 42
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
44 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ℤ ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℤ ) |
46 |
45
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
49 |
|
pncan2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
50 |
47 48 49
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( 𝑋 · 1 ) ) |
52 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
53 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
54 |
46 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
56 |
52 55 47
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ) |
57 |
52
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · 1 ) = 𝑋 ) |
58 |
51 56 57
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) = 𝑋 ) |
59 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
60 |
59
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
61 |
12
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
63 |
14
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
65 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
67 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
68 |
|
elfzle2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
69 |
67 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
70 |
|
iccss |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝑀 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
71 |
62 64 66 69 70
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
72 |
|
iccssre |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
73 |
61 63 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
75 |
71 74
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ) |
76 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
77 |
75 76
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ) |
78 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ⊆ ℂ ) |
79 |
|
cncfmptc |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
80 |
7 77 78 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
81 |
|
cncfmptid |
⊢ ( ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
82 |
75 76 81
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
83 |
|
remulcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) ∈ ℝ ) |
84 |
59 60 80 82 76 83
|
cncfmpt2ss |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
85 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ∈ { ℝ , ℂ } ) |
87 |
62
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
88 |
|
iooss1 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
89 |
87 66 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
90 |
64
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
91 |
|
iooss2 |
⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
92 |
90 69 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
93 |
89 92
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
94 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
95 |
74 76
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
96 |
94 95
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
97 |
93 96
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℂ ) |
98 |
97
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
99 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 1 ∈ ℂ ) |
100 |
78
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
101 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
102 |
86
|
dvmptid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
103 |
|
ioossre |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ |
104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ ) |
105 |
59
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
106 |
|
iooretop |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) |
107 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) ) |
108 |
86 100 101 102 104 105 59 107
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 1 ) ) |
109 |
86 98 99 108 52
|
dvmptcmul |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) ) |
110 |
57
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
111 |
109 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
112 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
113 |
112 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
114 |
71
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ) |
115 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
116 |
|
rescncf |
⊢ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) ) |
117 |
71 115 116
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
118 |
114 117
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
119 |
113 118
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
120 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
121 |
120 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
122 |
94
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
123 |
29
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
124 |
121 122 123
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
125 |
124
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
126 |
94
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
127 |
21
|
fvmptelrn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
129 |
126 128
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
130 |
129
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
131 |
|
ioossre |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ |
132 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
133 |
130 131 132
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
134 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
135 |
134
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
136 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
137 |
136
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
138 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
139 |
137 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
140 |
135 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
141 |
134 140
|
feq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
142 |
133 141
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
143 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) |
144 |
143
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
145 |
142 144
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ) |
146 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
147 |
146
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ |
148 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
149 |
148
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
150 |
147 149
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
151 |
145 150
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
152 |
112 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
153 |
152
|
oveq2i |
⊢ ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
154 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
155 |
154 146 148
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
156 |
134 153 155
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
157 |
86 125 151 156 93 105 59 107
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
158 |
8
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ 𝐵 ) |
159 |
158
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 ) |
160 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
161 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
162 |
160 161 146
|
nfbr |
⊢ Ⅎ 𝑥 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
163 |
148
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
164 |
162 163
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) → ( ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
165 |
159 164
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
166 |
46
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ* ) |
167 |
54
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ* ) |
168 |
46
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
169 |
|
lbicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
170 |
166 167 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
171 |
|
ubicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
172 |
166 167 168 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
173 |
|
oveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑘 ) ) |
174 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑘 + 1 ) ) ) |
175 |
46 54 84 111 119 157 165 170 172 168 173 39 174 34
|
dvle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
176 |
58 175
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
177 |
10 7 43 176
|
fsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
178 |
|
vex |
⊢ 𝑦 ∈ V |
179 |
178
|
a1i |
⊢ ( 𝑦 = 𝑀 → 𝑦 ∈ V ) |
180 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑀 ) ) |
181 |
180
|
biimpa |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑀 ) |
182 |
181 5
|
syl |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐶 ) |
183 |
179 182
|
csbied |
⊢ ( 𝑦 = 𝑀 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
184 |
178
|
a1i |
⊢ ( 𝑦 = 𝑁 → 𝑦 ∈ V ) |
185 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑁 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑁 ) ) |
186 |
185
|
biimpa |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑁 ) |
187 |
186 6
|
syl |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐷 ) |
188 |
184 187
|
csbied |
⊢ ( 𝑦 = 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐷 ) |
189 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
190 |
39 34 183 188 1 189
|
telfsumo2 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
191 |
177 190
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ ( 𝐷 − 𝐶 ) ) |