Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsumle.m |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
dvfsumle.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
3 |
|
dvfsumle.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
4 |
|
dvfsumle.b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
5 |
|
dvfsumle.c |
⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) |
6 |
|
dvfsumle.d |
⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) |
7 |
|
dvfsumle.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
8 |
|
dvfsumle.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ≤ 𝐵 ) |
9 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
15 |
|
fzval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
17 |
|
inss1 |
⊢ ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ⊆ ( 𝑀 [,] 𝑁 ) |
18 |
16 17
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
20 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
21 |
2 20
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
22 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) |
23 |
22
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
24 |
21 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
25 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
26 |
25
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ |
27 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
28 |
27
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
29 |
26 28
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
30 |
24 29
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
31 |
19 30
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
33 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
34 |
|
csbeq1 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ) |
35 |
34
|
eleq1d |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
36 |
35
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
37 |
32 33 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
38 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
39 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑘 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) |
40 |
39
|
eleq1d |
⊢ ( 𝑦 = 𝑘 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
41 |
40
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
42 |
32 38 41
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
43 |
37 42
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
44 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ℤ ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℤ ) |
46 |
45
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
47 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
49 |
|
pncan2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
50 |
47 48 49
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( 𝑋 · 1 ) ) |
52 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
53 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
54 |
46 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
56 |
52 55 47
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ) |
57 |
52
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · 1 ) = 𝑋 ) |
58 |
51 56 57
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) = 𝑋 ) |
59 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → 𝑋 ∈ ℂ ) |
60 |
46 54
|
iccssred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ) |
61 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
62 |
60 61
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ) |
63 |
62
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
64 |
|
ovmpot |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
65 |
59 63 64
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) = ( 𝑋 · 𝑦 ) ) |
66 |
65
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) → ( 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ↔ 𝑧 = ( 𝑋 · 𝑦 ) ) ) |
67 |
66
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ↔ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) ) ) |
68 |
67
|
opabbidv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) } ) |
69 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 · 𝑦 ) ) } |
70 |
68 69
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) |
71 |
|
df-mpt |
⊢ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } |
72 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
73 |
72
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
74 |
61
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ⊆ ℂ ) |
75 |
|
cncfmptc |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
76 |
7 62 74 75
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
77 |
|
cncfmptid |
⊢ ( ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
78 |
60 61 77
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
79 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑋 ∈ ℝ ) |
80 |
79
|
recnd |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑋 ∈ ℂ ) |
81 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
82 |
81
|
recnd |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
83 |
64
|
eqcomd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑋 · 𝑦 ) = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
84 |
80 82 83
|
syl2anc |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) |
85 |
|
remulcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) ∈ ℝ ) |
86 |
84 85
|
eqeltrrd |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ∈ ℝ ) |
87 |
72 73 76 78 61 86
|
cncfmpt2ss |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
88 |
71 87
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ∧ 𝑧 = ( 𝑋 ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) 𝑦 ) ) } ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
89 |
70 88
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
90 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
91 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ∈ { ℝ , ℂ } ) |
92 |
12
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
94 |
93
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
95 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) |
96 |
95
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
97 |
|
iooss1 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
98 |
94 96 97
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
99 |
14
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
101 |
100
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
102 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
103 |
|
elfzle2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
104 |
102 103
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
105 |
|
iooss2 |
⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
106 |
101 104 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
107 |
98 106
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
108 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
109 |
92 99
|
iccssred |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
110 |
109
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
111 |
110 61
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
112 |
108 111
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
113 |
107 112
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℂ ) |
114 |
113
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
115 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 1 ∈ ℂ ) |
116 |
74
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
117 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
118 |
91
|
dvmptid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
119 |
|
ioossre |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ |
120 |
119
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ ) |
121 |
72
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
122 |
|
iooretop |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) |
123 |
122
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) ) |
124 |
91 116 117 118 120 121 72 123
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 1 ) ) |
125 |
91 114 115 124 52
|
dvmptcmul |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) ) |
126 |
57
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
127 |
125 126
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
128 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
129 |
128 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
130 |
|
iccss |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝑀 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
131 |
93 100 96 104 130
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
132 |
131
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ) |
133 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
134 |
|
rescncf |
⊢ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) ) |
135 |
131 133 134
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
136 |
132 135
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
137 |
129 136
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
138 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
139 |
138 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
140 |
108
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
141 |
29
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
142 |
139 140 141
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
143 |
142
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
144 |
108
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
145 |
21
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
146 |
145
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
147 |
144 146
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
148 |
147
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
149 |
|
ioossre |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ |
150 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
151 |
148 149 150
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
152 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
153 |
152
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
154 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
155 |
154
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
156 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
157 |
155 156
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
158 |
153 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
159 |
152 158
|
feq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
160 |
151 159
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
161 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) |
162 |
161
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
163 |
160 162
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ) |
164 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
165 |
164
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ |
166 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
167 |
166
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
168 |
165 167
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
169 |
163 168
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
170 |
128 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
171 |
170
|
oveq2i |
⊢ ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
172 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
173 |
172 164 166
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
174 |
152 171 173
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
175 |
91 143 169 174 107 121 72 123
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
176 |
8
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ 𝐵 ) |
177 |
176
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 ) |
178 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
179 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
180 |
178 179 164
|
nfbr |
⊢ Ⅎ 𝑥 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
181 |
166
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
182 |
180 181
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) → ( ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
183 |
177 182
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
184 |
46
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ* ) |
185 |
54
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ* ) |
186 |
46
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
187 |
|
lbicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
188 |
184 185 186 187
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
189 |
|
ubicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
190 |
184 185 186 189
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
191 |
|
oveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑘 ) ) |
192 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑘 + 1 ) ) ) |
193 |
46 54 89 127 137 175 183 188 190 186 191 39 192 34
|
dvle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
194 |
58 193
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
195 |
10 7 43 194
|
fsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
196 |
|
vex |
⊢ 𝑦 ∈ V |
197 |
196
|
a1i |
⊢ ( 𝑦 = 𝑀 → 𝑦 ∈ V ) |
198 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑀 ) ) |
199 |
198
|
biimpa |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑀 ) |
200 |
199 5
|
syl |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐶 ) |
201 |
197 200
|
csbied |
⊢ ( 𝑦 = 𝑀 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
202 |
196
|
a1i |
⊢ ( 𝑦 = 𝑁 → 𝑦 ∈ V ) |
203 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑁 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑁 ) ) |
204 |
203
|
biimpa |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑁 ) |
205 |
204 6
|
syl |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐷 ) |
206 |
202 205
|
csbied |
⊢ ( 𝑦 = 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐷 ) |
207 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
208 |
39 34 201 206 1 207
|
telfsumo2 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
209 |
195 208
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ ( 𝐷 − 𝐶 ) ) |