| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsumleOLD.m |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
dvfsumleOLD.a |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 3 |
|
dvfsumleOLD.v |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 4 |
|
dvfsumleOLD.b |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 5 |
|
dvfsumleOLD.c |
⊢ ( 𝑥 = 𝑀 → 𝐴 = 𝐶 ) |
| 6 |
|
dvfsumleOLD.d |
⊢ ( 𝑥 = 𝑁 → 𝐴 = 𝐷 ) |
| 7 |
|
dvfsumleOLD.x |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℝ ) |
| 8 |
|
dvfsumleOLD.l |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) ) → 𝑋 ≤ 𝐵 ) |
| 9 |
|
fzofi |
⊢ ( 𝑀 ..^ 𝑁 ) ∈ Fin |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝑀 ..^ 𝑁 ) ∈ Fin ) |
| 11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 12 |
1 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 13 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 15 |
|
fzval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) = ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ) |
| 17 |
|
inss1 |
⊢ ( ( 𝑀 [,] 𝑁 ) ∩ ℤ ) ⊆ ( 𝑀 [,] 𝑁 ) |
| 18 |
16 17
|
eqsstrdi |
⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 19 |
18
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 20 |
|
cncff |
⊢ ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 21 |
2 20
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 22 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) = ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) |
| 23 |
22
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 24 |
21 23
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 25 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
| 26 |
25
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ |
| 27 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 28 |
27
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 29 |
26 28
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 [,] 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 30 |
24 29
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 31 |
19 30
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 33 |
|
fzofzp1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 34 |
|
csbeq1 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 36 |
35
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 37 |
32 33 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 38 |
|
elfzofz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 39 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑘 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑦 = 𝑘 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ↔ ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) ) |
| 41 |
40
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 42 |
32 38 41
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 43 |
37 42
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ∈ ℝ ) |
| 44 |
|
elfzoelz |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑘 ∈ ℤ ) |
| 45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 46 |
45
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 48 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 49 |
|
pncan2 |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
| 50 |
47 48 49
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑘 + 1 ) − 𝑘 ) = 1 ) |
| 51 |
50
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( 𝑋 · 1 ) ) |
| 52 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ∈ ℂ ) |
| 53 |
|
peano2re |
⊢ ( 𝑘 ∈ ℝ → ( 𝑘 + 1 ) ∈ ℝ ) |
| 54 |
46 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 55 |
54
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 56 |
52 55 47
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · ( ( 𝑘 + 1 ) − 𝑘 ) ) = ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ) |
| 57 |
52
|
mulridd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑋 · 1 ) = 𝑋 ) |
| 58 |
51 56 57
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) = 𝑋 ) |
| 59 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 60 |
59
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 61 |
12
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
| 63 |
14
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
| 65 |
|
elfzole1 |
⊢ ( 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑘 ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑘 ) |
| 67 |
33
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 68 |
|
elfzle2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 69 |
67 68
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ≤ 𝑁 ) |
| 70 |
|
iccss |
⊢ ( ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) ∧ ( 𝑀 ≤ 𝑘 ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 71 |
62 64 66 69 70
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) ) |
| 72 |
|
iccssre |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 73 |
61 63 72
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℝ ) |
| 75 |
71 74
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ) |
| 76 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 77 |
75 76
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ) |
| 78 |
76
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ⊆ ℂ ) |
| 79 |
|
cncfmptc |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 80 |
7 77 78 79
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑋 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 81 |
|
cncfmptid |
⊢ ( ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 82 |
75 76 81
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝑦 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 83 |
|
remulcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑋 · 𝑦 ) ∈ ℝ ) |
| 84 |
59 60 80 82 76 83
|
cncfmpt2ss |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 85 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 86 |
85
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ℝ ∈ { ℝ , ℂ } ) |
| 87 |
62
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ* ) |
| 88 |
|
iooss1 |
⊢ ( ( 𝑀 ∈ ℝ* ∧ 𝑀 ≤ 𝑘 ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 89 |
87 66 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) ( 𝑘 + 1 ) ) ) |
| 90 |
64
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℝ* ) |
| 91 |
|
iooss2 |
⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑘 + 1 ) ≤ 𝑁 ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 92 |
90 69 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 93 |
89 92
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ( 𝑀 (,) 𝑁 ) ) |
| 94 |
|
ioossicc |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ( 𝑀 [,] 𝑁 ) |
| 95 |
74 76
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 [,] 𝑁 ) ⊆ ℂ ) |
| 96 |
94 95
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 (,) 𝑁 ) ⊆ ℂ ) |
| 97 |
93 96
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℂ ) |
| 98 |
97
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑦 ∈ ℂ ) |
| 99 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 1 ∈ ℂ ) |
| 100 |
78
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 101 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
| 102 |
86
|
dvmptid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ℝ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℝ ↦ 1 ) ) |
| 103 |
|
ioossre |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ |
| 104 |
103
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ⊆ ℝ ) |
| 105 |
59
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 106 |
|
iooretop |
⊢ ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) |
| 107 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 (,) ( 𝑘 + 1 ) ) ∈ ( topGen ‘ ran (,) ) ) |
| 108 |
86 100 101 102 104 105 59 107
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑦 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 1 ) ) |
| 109 |
86 98 99 108 52
|
dvmptcmul |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) ) |
| 110 |
57
|
mpteq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 1 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
| 111 |
109 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ( 𝑋 · 𝑦 ) ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ 𝑋 ) ) |
| 112 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 113 |
112 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 114 |
71
|
resmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ) |
| 115 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) ) |
| 116 |
|
rescncf |
⊢ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) ⊆ ( 𝑀 [,] 𝑁 ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ∈ ( ( 𝑀 [,] 𝑁 ) –cn→ ℝ ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) ) |
| 117 |
71 115 116
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) ↾ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 118 |
114 117
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 119 |
113 118
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑦 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ∈ ( ( 𝑘 [,] ( 𝑘 + 1 ) ) –cn→ ℝ ) ) |
| 120 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ↦ 𝐴 ) : ( 𝑀 [,] 𝑁 ) ⟶ ℝ ) |
| 121 |
120 23
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ) |
| 122 |
94
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 123 |
29
|
impcom |
⊢ ( ( ∀ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) 𝐴 ∈ ℝ ∧ 𝑦 ∈ ( 𝑀 [,] 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 124 |
121 122 123
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℝ ) |
| 125 |
124
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 126 |
94
|
sseli |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) → 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) |
| 127 |
21
|
fvmptelcdm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 128 |
127
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 [,] 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 129 |
126 128
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐴 ∈ ℝ ) |
| 130 |
129
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 131 |
|
ioossre |
⊢ ( 𝑀 (,) 𝑁 ) ⊆ ℝ |
| 132 |
|
dvfre |
⊢ ( ( ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ∧ ( 𝑀 (,) 𝑁 ) ⊆ ℝ ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 133 |
130 131 132
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ) |
| 134 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 135 |
134
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) ) |
| 136 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ) → 𝐵 ∈ 𝑉 ) |
| 137 |
136
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 ) |
| 138 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ 𝑉 → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 139 |
137 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑀 (,) 𝑁 ) ) |
| 140 |
135 139
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( 𝑀 (,) 𝑁 ) ) |
| 141 |
134 140
|
feq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) : dom ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) ⟶ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) ) |
| 142 |
133 141
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 143 |
|
eqid |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) |
| 144 |
143
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ↔ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) : ( 𝑀 (,) 𝑁 ) ⟶ ℝ ) |
| 145 |
142 144
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ ) |
| 146 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 147 |
146
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ |
| 148 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 149 |
148
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 150 |
147 149
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) → ( ∀ 𝑥 ∈ ( 𝑀 (,) 𝑁 ) 𝐵 ∈ ℝ → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
| 151 |
145 150
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
| 152 |
112 25 27
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 153 |
152
|
oveq2i |
⊢ ( ℝ D ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 154 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 155 |
154 146 148
|
cbvmpt |
⊢ ( 𝑥 ∈ ( 𝑀 (,) 𝑁 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 156 |
134 153 155
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑀 (,) 𝑁 ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 157 |
86 125 151 156 93 105 59 107
|
dvmptres |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ℝ D ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 158 |
8
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ 𝐵 ) |
| 159 |
158
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 ) |
| 160 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑋 |
| 161 |
|
nfcv |
⊢ Ⅎ 𝑥 ≤ |
| 162 |
160 161 146
|
nfbr |
⊢ Ⅎ 𝑥 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 163 |
148
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ≤ 𝐵 ↔ 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 164 |
162 163
|
rspc |
⊢ ( 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) → ( ∀ 𝑥 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) 𝑋 ≤ 𝐵 → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 165 |
159 164
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ( 𝑘 (,) ( 𝑘 + 1 ) ) ) → 𝑋 ≤ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 166 |
46
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ℝ* ) |
| 167 |
54
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ℝ* ) |
| 168 |
46
|
lep1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 169 |
|
lbicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 170 |
166 167 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑘 ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 171 |
|
ubicc2 |
⊢ ( ( 𝑘 ∈ ℝ* ∧ ( 𝑘 + 1 ) ∈ ℝ* ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 172 |
166 167 168 171
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 𝑘 [,] ( 𝑘 + 1 ) ) ) |
| 173 |
|
oveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑋 · 𝑦 ) = ( 𝑋 · 𝑘 ) ) |
| 174 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑘 + 1 ) → ( 𝑋 · 𝑦 ) = ( 𝑋 · ( 𝑘 + 1 ) ) ) |
| 175 |
46 54 84 111 119 157 165 170 172 168 173 39 174 34
|
dvle |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑋 · ( 𝑘 + 1 ) ) − ( 𝑋 · 𝑘 ) ) ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 176 |
58 175
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑋 ≤ ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 177 |
10 7 43 176
|
fsumle |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) ) |
| 178 |
|
vex |
⊢ 𝑦 ∈ V |
| 179 |
178
|
a1i |
⊢ ( 𝑦 = 𝑀 → 𝑦 ∈ V ) |
| 180 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑀 ) ) |
| 181 |
180
|
biimpa |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑀 ) |
| 182 |
181 5
|
syl |
⊢ ( ( 𝑦 = 𝑀 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐶 ) |
| 183 |
179 182
|
csbied |
⊢ ( 𝑦 = 𝑀 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐶 ) |
| 184 |
178
|
a1i |
⊢ ( 𝑦 = 𝑁 → 𝑦 ∈ V ) |
| 185 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑁 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑁 ) ) |
| 186 |
185
|
biimpa |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑁 ) |
| 187 |
186 6
|
syl |
⊢ ( ( 𝑦 = 𝑁 ∧ 𝑥 = 𝑦 ) → 𝐴 = 𝐷 ) |
| 188 |
184 187
|
csbied |
⊢ ( 𝑦 = 𝑁 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐷 ) |
| 189 |
31
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑀 ... 𝑁 ) ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 190 |
39 34 183 188 1 189
|
telfsumo2 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) ( ⦋ ( 𝑘 + 1 ) / 𝑥 ⦌ 𝐴 − ⦋ 𝑘 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 − 𝐶 ) ) |
| 191 |
177 190
|
breqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ..^ 𝑁 ) 𝑋 ≤ ( 𝐷 − 𝐶 ) ) |