Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsum.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
13 |
|
dvfsum.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
14 |
|
dvfsum.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) |
15 |
|
dvfsumlem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
16 |
|
dvfsumlem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
17 |
|
dvfsumlem1.3 |
⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) |
18 |
|
dvfsumlem1.4 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
19 |
|
dvfsumlem1.5 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) |
20 |
|
dvfsumlem1.6 |
⊢ ( 𝜑 → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
21 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
22 |
1 21
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
23 |
22 16
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
24 |
22 15
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
25 |
24
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
26 |
|
reflcl |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
27 |
24 26
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
28 |
|
flle |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
29 |
24 28
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑋 ) |
30 |
27 24 23 29 18
|
letrd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) |
31 |
|
flbi |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ ( ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
32 |
31
|
baibd |
⊢ ( ( ( 𝑌 ∈ ℝ ∧ ( ⌊ ‘ 𝑋 ) ∈ ℤ ) ∧ ( ⌊ ‘ 𝑋 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
33 |
23 25 30 32
|
syl21anc |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ↔ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
34 |
33
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ⌊ ‘ 𝑋 ) ) |
35 |
34
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ) |
36 |
35
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
37 |
34
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
38 |
37
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
39 |
38
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
40 |
36 39
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
42 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ∈ ℝ ) |
43 |
42
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
44 |
43
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
45 |
41 44
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ∈ ℤ ) |
46 |
|
flid |
⊢ ( 𝑌 ∈ ℤ → ( ⌊ ‘ 𝑌 ) = 𝑌 ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = 𝑌 ) |
48 |
47 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ⌊ ‘ 𝑌 ) = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
49 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
51 |
23
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
52 |
27
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑋 ) ∈ ℂ ) |
53 |
51 52
|
subcld |
⊢ ( 𝜑 → ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) ∈ ℂ ) |
54 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
55 |
22
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
56 |
55 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
57 |
56
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ ) |
59 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 |
60 |
59
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ |
61 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑌 → 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
62 |
61
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
63 |
60 62
|
rspc |
⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) ) |
64 |
16 58 63
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
65 |
53 54 64
|
subdird |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
66 |
51 52 54
|
subsub4d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) = ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
67 |
66
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) − 1 ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
68 |
64
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
69 |
68
|
oveq2d |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ( 1 · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
70 |
65 67 69
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
71 |
70
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ( ⌊ ‘ 𝑋 ) + 1 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
72 |
50 71
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
73 |
25
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
74 |
3
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
75 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
77 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
78 |
74 77 4
|
lesubaddd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝐷 ↔ 𝑀 ≤ ( 𝐷 + 1 ) ) ) |
79 |
5 78
|
mpbird |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝐷 ) |
80 |
76 4 24 79 17
|
letrd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ 𝑋 ) |
81 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
82 |
3 81
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
83 |
|
flge |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) |
84 |
24 82 83
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ 𝑋 ↔ ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) ) |
85 |
80 84
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ) |
86 |
74 77 27
|
lesubaddd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) ≤ ( ⌊ ‘ 𝑋 ) ↔ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
87 |
85 86
|
mpbid |
⊢ ( 𝜑 → 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
88 |
|
eluz2 |
⊢ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
89 |
3 73 87 88
|
syl3anbrc |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
90 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
91 |
90
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ) |
92 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
93 |
92 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑘 ∈ 𝑍 ) |
94 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
95 |
94
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℂ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℂ ) |
96 |
91 93 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) → 𝐶 ∈ ℂ ) |
97 |
|
eqvisset |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V ) |
98 |
|
eqeq2 |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( 𝑥 = 𝑘 ↔ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
99 |
98
|
biimpar |
⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑥 = 𝑘 ) |
100 |
99 11
|
syl |
⊢ ( ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ∧ 𝑥 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐵 = 𝐶 ) |
101 |
97 100
|
csbied |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 = 𝐶 ) |
102 |
101
|
eqcomd |
⊢ ( 𝑘 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → 𝐶 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
103 |
89 96 102
|
fsumm1 |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
104 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
105 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝑋 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) |
106 |
52 104 105
|
sylancl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑋 ) ) |
107 |
106
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) |
108 |
107
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) |
109 |
108
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( ( ⌊ ‘ 𝑋 ) + 1 ) − 1 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
110 |
103 109
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
112 |
48
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) = ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
113 |
112
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ( ⌊ ‘ 𝑋 ) + 1 ) ) 𝐶 ) |
114 |
41
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
115 |
114
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
116 |
111 113 115
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
117 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
118 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ∈ Fin ) |
119 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
120 |
119 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) → 𝑘 ∈ 𝑍 ) |
121 |
91 120 95
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) ) → 𝐶 ∈ ℂ ) |
122 |
118 121
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ∈ ℂ ) |
123 |
7
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℂ ) |
124 |
123
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ ) |
125 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 |
126 |
125
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ |
127 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑌 → 𝐴 = ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
128 |
127
|
eleq1d |
⊢ ( 𝑥 = 𝑌 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
129 |
126 128
|
rspc |
⊢ ( 𝑌 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐴 ∈ ℂ → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
130 |
16 124 129
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
131 |
122 64 130
|
addsubd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
133 |
117 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) = ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
134 |
72 133
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
135 |
53 64
|
mulcld |
⊢ ( 𝜑 → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
136 |
135
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℂ ) |
137 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
138 |
122 130
|
subcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ∈ ℂ ) |
140 |
136 137 139
|
nppcan3d |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
141 |
134 140
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
142 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑋 ) ∈ ℝ → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
143 |
27 142
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
144 |
23 143
|
leloed |
⊢ ( 𝜑 → ( 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ↔ ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
145 |
20 144
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ∨ 𝑌 = ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
146 |
40 141 145
|
mpjaodan |
⊢ ( 𝜑 → ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
147 |
|
ovex |
⊢ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V |
148 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
149 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) |
150 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
151 |
149 150 59
|
nfov |
⊢ Ⅎ 𝑥 ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
152 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
153 |
|
nfcv |
⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 |
154 |
|
nfcv |
⊢ Ⅎ 𝑥 − |
155 |
153 154 125
|
nfov |
⊢ Ⅎ 𝑥 ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) |
156 |
151 152 155
|
nfov |
⊢ Ⅎ 𝑥 ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
157 |
|
id |
⊢ ( 𝑥 = 𝑌 → 𝑥 = 𝑌 ) |
158 |
|
fveq2 |
⊢ ( 𝑥 = 𝑌 → ( ⌊ ‘ 𝑥 ) = ( ⌊ ‘ 𝑌 ) ) |
159 |
157 158
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) = ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) ) |
160 |
159 61
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) = ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
161 |
158
|
oveq2d |
⊢ ( 𝑥 = 𝑌 → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) = ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) ) |
162 |
161
|
sumeq1d |
⊢ ( 𝑥 = 𝑌 → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 = Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 ) |
163 |
162 127
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) |
164 |
160 163
|
oveq12d |
⊢ ( 𝑥 = 𝑌 → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
165 |
148 156 164 14
|
fvmptf |
⊢ ( ( 𝑌 ∈ 𝑆 ∧ ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ∈ V ) → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
166 |
16 147 165
|
sylancl |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑌 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑌 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
167 |
135 130 122
|
subadd23d |
⊢ ( 𝜑 → ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) = ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) ) ) |
168 |
146 166 167
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑌 ) = ( ( ( ( 𝑌 − ( ⌊ ‘ 𝑋 ) ) · ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐴 ) + Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑋 ) ) 𝐶 ) ) |