Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsum.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ* ) |
13 |
|
dvfsum.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
14 |
|
dvfsum.h |
⊢ 𝐻 = ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ) |
15 |
|
dvfsumlem1.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
16 |
|
dvfsumlem1.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
17 |
|
dvfsumlem1.3 |
⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) |
18 |
|
dvfsumlem1.4 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
19 |
|
dvfsumlem1.5 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑈 ) |
20 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
21 |
1 20
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
22 |
21 16
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
23 |
21 15
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
24 |
|
reflcl |
⊢ ( 𝑋 ∈ ℝ → ( ⌊ ‘ 𝑋 ) ∈ ℝ ) |
25 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑋 ) ∈ ℝ → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
26 |
23 24 25
|
3syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑀 ∈ ℤ ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐷 ∈ ℝ ) |
29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑇 ∈ ℝ ) |
31 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
32 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
33 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
34 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
35 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑈 ∈ ℝ* ) |
36 |
13
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
37 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ∈ 𝑆 ) |
38 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ∈ 𝑆 ) |
39 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝐷 ≤ 𝑋 ) |
40 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑋 ≤ 𝑌 ) |
41 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ≤ 𝑈 ) |
42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
43 |
1 2 27 28 29 30 31 32 33 34 11 35 36 14 37 38 39 40 41 42
|
dvfsumlem2 |
⊢ ( ( 𝜑 ∧ 𝑌 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
44 |
21
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
45 |
44
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℝ ) |
46 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
48 |
45 47
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) ∈ ℝ ) |
49 |
44 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
50 |
48 49
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) ∈ ℝ ) |
51 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
52 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ) |
54 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
55 |
54 2
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) → 𝑘 ∈ 𝑍 ) |
56 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑘 → ( 𝐵 ∈ ℝ ↔ 𝐶 ∈ ℝ ) ) |
57 |
56
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝑍 𝐵 ∈ ℝ ∧ 𝑘 ∈ 𝑍 ) → 𝐶 ∈ ℝ ) |
58 |
53 55 57
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
59 |
51 58
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 ∈ ℝ ) |
60 |
59 7
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ ℝ ) |
61 |
50 60
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝑥 − ( ⌊ ‘ 𝑥 ) ) · 𝐵 ) + ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) ∈ ℝ ) |
62 |
61 14
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑆 ⟶ ℝ ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐻 : 𝑆 ⟶ ℝ ) |
64 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ 𝑆 ) |
65 |
63 64
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ∈ ℝ ) |
66 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ ℝ ) |
67 |
|
reflcl |
⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
69 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 ∈ ℝ ) |
70 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ∈ ℝ ) |
71 |
70 24 25
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
72 |
15 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
73 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
74 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
75 |
73 74
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
76 |
72 75
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
77 |
76
|
simprd |
⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
78 |
|
fllep1 |
⊢ ( 𝑋 ∈ ℝ → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
79 |
23 78
|
syl |
⊢ ( 𝜑 → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
80 |
6 23 26 77 79
|
ltletrd |
⊢ ( 𝜑 → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
82 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) |
83 |
70
|
flcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑋 ) ∈ ℤ ) |
84 |
83
|
peano2zd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) |
85 |
|
flge |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ↔ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
86 |
66 84 85
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ↔ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
87 |
82 86
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
88 |
69 71 68 81 87
|
ltletrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 < ( ⌊ ‘ 𝑌 ) ) |
89 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑇 ∈ ℝ* ) |
90 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ ∧ 𝑇 < ( ⌊ ‘ 𝑌 ) ) ) ) |
91 |
89 90
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ ∧ 𝑇 < ( ⌊ ‘ 𝑌 ) ) ) ) |
92 |
68 88 91
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ( 𝑇 (,) +∞ ) ) |
93 |
92 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ 𝑆 ) |
94 |
63 93
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ∈ ℝ ) |
95 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ∈ 𝑆 ) |
96 |
63 95
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑋 ) ∈ ℝ ) |
97 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑀 ∈ ℤ ) |
98 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ∈ ℝ ) |
99 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
100 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
101 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
102 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
103 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
104 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑈 ∈ ℝ* ) |
105 |
13
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
106 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ 𝑋 ) |
107 |
70 78
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑋 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
108 |
98 70 71 106 107
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
109 |
98 71 68 108 87
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝐷 ≤ ( ⌊ ‘ 𝑌 ) ) |
110 |
|
flle |
⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) |
111 |
66 110
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) |
112 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ 𝑈 ) |
113 |
|
fllep1 |
⊢ ( 𝑌 ∈ ℝ → 𝑌 ≤ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
114 |
66 113
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
115 |
|
flidm |
⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) = ( ⌊ ‘ 𝑌 ) ) |
116 |
66 115
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) = ( ⌊ ‘ 𝑌 ) ) |
117 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) + 1 ) = ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
118 |
114 117
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ≤ ( ( ⌊ ‘ ( ⌊ ‘ 𝑌 ) ) + 1 ) ) |
119 |
1 2 97 98 99 69 100 101 102 103 11 104 105 14 93 64 109 111 112 118
|
dvfsumlem2 |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ∧ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
120 |
119
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ) |
121 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ∧ 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
122 |
73 121
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ∧ 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) ) |
123 |
26 80 122
|
mpbir2and |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ( 𝑇 (,) +∞ ) ) |
124 |
123 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ 𝑆 ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ 𝑆 ) |
126 |
63 125
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ∈ ℝ ) |
127 |
66
|
flcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
128 |
|
eluz2 |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ↔ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℤ ∧ ( ⌊ ‘ 𝑌 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
129 |
84 127 87 128
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
130 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝐻 : 𝑆 ⟶ ℝ ) |
131 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → 𝑚 ∈ ℤ ) |
132 |
131
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ℤ ) |
133 |
132
|
zred |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ℝ ) |
134 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 ∈ ℝ ) |
135 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
136 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
137 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
138 |
137
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
139 |
134 135 133 136 138
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 < 𝑚 ) |
140 |
73
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑇 ∈ ℝ* ) |
141 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) |
142 |
140 141
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) |
143 |
133 139 142
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ ( 𝑇 (,) +∞ ) ) |
144 |
143 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑚 ∈ 𝑆 ) |
145 |
130 144
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
146 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑀 ∈ ℤ ) |
147 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ∈ ℝ ) |
148 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
149 |
69
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 ∈ ℝ ) |
150 |
100
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
151 |
101
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
152 |
102
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
153 |
103
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
154 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑈 ∈ ℝ* ) |
155 |
105
|
3adant1r |
⊢ ( ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ 𝑈 ) ) → 𝐶 ≤ 𝐵 ) |
156 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → 𝑚 ∈ ℤ ) |
157 |
156
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ℤ ) |
158 |
157
|
zred |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ℝ ) |
159 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ ) |
160 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
161 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
162 |
161
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑚 ) |
163 |
149 159 158 160 162
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < 𝑚 ) |
164 |
149
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 ∈ ℝ* ) |
165 |
164 141
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 𝑇 < 𝑚 ) ) ) |
166 |
158 163 165
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ ( 𝑇 (,) +∞ ) ) |
167 |
166 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ∈ 𝑆 ) |
168 |
|
peano2re |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) |
169 |
158 168
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ ) |
170 |
158
|
lep1d |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ≤ ( 𝑚 + 1 ) ) |
171 |
149 158 169 163 170
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑇 < ( 𝑚 + 1 ) ) |
172 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑇 < ( 𝑚 + 1 ) ) ) ) |
173 |
164 172
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ↔ ( ( 𝑚 + 1 ) ∈ ℝ ∧ 𝑇 < ( 𝑚 + 1 ) ) ) ) |
174 |
169 171 173
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ( 𝑇 (,) +∞ ) ) |
175 |
174 1
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ 𝑆 ) |
176 |
108
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
177 |
147 159 158 176 162
|
letrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝐷 ≤ 𝑚 ) |
178 |
169
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ∈ ℝ* ) |
179 |
68
|
rexrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ* ) |
180 |
179
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ* ) |
181 |
|
elfzle2 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) |
182 |
181
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) |
183 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 1 ∈ ℝ ) |
184 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑌 ∈ ℝ ) |
185 |
184 67
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
186 |
|
leaddsub |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ⌊ ‘ 𝑌 ) ∈ ℝ ) → ( ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ↔ 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) |
187 |
158 183 185 186
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ↔ 𝑚 ≤ ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) |
188 |
182 187
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
189 |
66
|
rexrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → 𝑌 ∈ ℝ* ) |
190 |
179 189 104 111 112
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑈 ) |
191 |
190
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑌 ) ≤ 𝑈 ) |
192 |
178 180 154 188 191
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ 𝑈 ) |
193 |
|
flid |
⊢ ( 𝑚 ∈ ℤ → ( ⌊ ‘ 𝑚 ) = 𝑚 ) |
194 |
157 193
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ⌊ ‘ 𝑚 ) = 𝑚 ) |
195 |
194
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → 𝑚 = ( ⌊ ‘ 𝑚 ) ) |
196 |
195
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) = ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
197 |
169 196
|
eqled |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝑚 + 1 ) ≤ ( ( ⌊ ‘ 𝑚 ) + 1 ) ) |
198 |
1 2 146 147 148 149 150 151 152 153 11 154 155 14 167 175 177 170 192 197
|
dvfsumlem2 |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐻 ‘ 𝑚 ) ∧ ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) ) |
199 |
198
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( 𝐻 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝐻 ‘ 𝑚 ) ) |
200 |
129 145 199
|
monoord2 |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ≤ ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
201 |
71
|
rexrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ ℝ* ) |
202 |
201 179 104 87 190
|
xrletrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑈 ) |
203 |
71
|
leidd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) |
204 |
1 2 97 98 99 69 100 101 102 103 11 104 105 14 95 125 106 107 202 203
|
dvfsumlem2 |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) ) |
205 |
204
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
206 |
94 126 96 200 205
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
207 |
65 94 96 120 206
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ) |
208 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑋 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
209 |
208
|
eleq1d |
⊢ ( 𝑚 = 𝑋 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
210 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
211 |
210
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
212 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 |
213 |
212
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ |
214 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
215 |
214
|
eleq1d |
⊢ ( 𝑥 = 𝑚 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
216 |
213 215
|
rspc |
⊢ ( 𝑚 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
217 |
211 216
|
mpan9 |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ 𝑆 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
218 |
217
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ∀ 𝑚 ∈ 𝑆 ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
219 |
209 218 95
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
220 |
96 219
|
resubcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
221 |
|
csbeq1 |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
222 |
221
|
eleq1d |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
223 |
222 218 93
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
224 |
94 223
|
resubcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
225 |
|
csbeq1 |
⊢ ( 𝑚 = 𝑌 → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) |
226 |
225
|
eleq1d |
⊢ ( 𝑚 = 𝑌 → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
227 |
226 218 64
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
228 |
65 227
|
resubcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
229 |
|
csbeq1 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
230 |
229
|
eleq1d |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ↔ ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
231 |
230 218 125
|
rspcdva |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
232 |
126 231
|
resubcld |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
233 |
204
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
234 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ 𝑚 ) ) |
235 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑚 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
236 |
234 235
|
oveq12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ) |
237 |
|
eqid |
⊢ ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) = ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
238 |
|
ovex |
⊢ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ∈ V |
239 |
236 237 238
|
fvmpt3i |
⊢ ( 𝑚 ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ) |
240 |
239
|
elv |
⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) = ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) |
241 |
144 217
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
242 |
145 241
|
resubcld |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ∈ ℝ ) |
243 |
240 242
|
eqeltrid |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) ∈ ℝ ) |
244 |
198
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝐻 ‘ 𝑚 ) − ⦋ 𝑚 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
245 |
|
ovex |
⊢ ( 𝑚 + 1 ) ∈ V |
246 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( 𝑚 + 1 ) ) ) |
247 |
|
csbeq1 |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) |
248 |
246 247
|
oveq12d |
⊢ ( 𝑦 = ( 𝑚 + 1 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
249 |
248 237 238
|
fvmpt3i |
⊢ ( ( 𝑚 + 1 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
250 |
245 249
|
ax-mp |
⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝐻 ‘ ( 𝑚 + 1 ) ) − ⦋ ( 𝑚 + 1 ) / 𝑥 ⦌ 𝐵 ) |
251 |
244 240 250
|
3brtr4g |
⊢ ( ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) − 1 ) ) ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ 𝑚 ) ≤ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( 𝑚 + 1 ) ) ) |
252 |
129 243 251
|
monoord |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ≤ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) ) |
253 |
|
ovex |
⊢ ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V |
254 |
|
fveq2 |
⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) ) |
255 |
|
csbeq1 |
⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
256 |
254 255
|
oveq12d |
⊢ ( 𝑦 = ( ( ⌊ ‘ 𝑋 ) + 1 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
257 |
256 237 238
|
fvmpt3i |
⊢ ( ( ( ⌊ ‘ 𝑋 ) + 1 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ) |
258 |
253 257
|
ax-mp |
⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) = ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) |
259 |
|
fvex |
⊢ ( ⌊ ‘ 𝑌 ) ∈ V |
260 |
|
fveq2 |
⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ( 𝐻 ‘ 𝑦 ) = ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) ) |
261 |
|
csbeq1 |
⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
262 |
260 261
|
oveq12d |
⊢ ( 𝑦 = ( ⌊ ‘ 𝑌 ) → ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
263 |
262 237 238
|
fvmpt3i |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ V → ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
264 |
259 263
|
ax-mp |
⊢ ( ( 𝑦 ∈ V ↦ ( ( 𝐻 ‘ 𝑦 ) − ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) ‘ ( ⌊ ‘ 𝑌 ) ) = ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) |
265 |
252 258 264
|
3brtr3g |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ( ⌊ ‘ 𝑋 ) + 1 ) ) − ⦋ ( ( ⌊ ‘ 𝑋 ) + 1 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
266 |
220 232 224 233 265
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ) |
267 |
119
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ ( ⌊ ‘ 𝑌 ) ) − ⦋ ( ⌊ ‘ 𝑌 ) / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
268 |
220 224 228 266 267
|
letrd |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) |
269 |
207 268
|
jca |
⊢ ( ( 𝜑 ∧ ( ( ⌊ ‘ 𝑋 ) + 1 ) ≤ 𝑌 ) → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |
270 |
22 26 43 269
|
lecasei |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑌 ) ≤ ( 𝐻 ‘ 𝑋 ) ∧ ( ( 𝐻 ‘ 𝑋 ) − ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ≤ ( ( 𝐻 ‘ 𝑌 ) − ⦋ 𝑌 / 𝑥 ⦌ 𝐵 ) ) ) |