Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsumrlim.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
13 |
|
dvfsumrlim.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) |
14 |
|
dvfsumrlim.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
15 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
16 |
1 15
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
19 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
20 |
|
fss |
⊢ ( ( 𝐺 : 𝑆 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐺 : 𝑆 ⟶ ℂ ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
22 |
1
|
supeq1i |
⊢ sup ( 𝑆 , ℝ* , < ) = sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) |
23 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
24 |
23 6
|
sselid |
⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
25 |
6
|
renepnfd |
⊢ ( 𝜑 → 𝑇 ≠ +∞ ) |
26 |
|
ioopnfsup |
⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 ≠ +∞ ) → sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) = +∞ ) |
27 |
24 25 26
|
syl2anc |
⊢ ( 𝜑 → sup ( ( 𝑇 (,) +∞ ) , ℝ* , < ) = +∞ ) |
28 |
22 27
|
eqtrid |
⊢ ( 𝜑 → sup ( 𝑆 , ℝ* , < ) = +∞ ) |
29 |
8 14
|
rlimmptrcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℂ ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℂ ) |
31 |
30 17
|
rlim0 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ↔ ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) |
32 |
14 31
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) |
33 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → 𝑆 ⊆ ℝ ) |
34 |
|
peano2re |
⊢ ( 𝑇 ∈ ℝ → ( 𝑇 + 1 ) ∈ ℝ ) |
35 |
6 34
|
syl |
⊢ ( 𝜑 → ( 𝑇 + 1 ) ∈ ℝ ) |
36 |
35 4
|
ifcld |
⊢ ( 𝜑 → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) |
37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) |
38 |
|
rexico |
⊢ ( ( 𝑆 ⊆ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) |
39 |
33 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) ) |
40 |
|
elicopnf |
⊢ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ∈ ℝ → ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) ) ) |
41 |
36 40
|
syl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) ) ) |
42 |
41
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ ℝ ) |
43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 ∈ ℝ ) |
44 |
43 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑇 + 1 ) ∈ ℝ ) |
45 |
43
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 < ( 𝑇 + 1 ) ) |
46 |
41
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ) |
47 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝐷 ∈ ℝ ) |
48 |
|
maxle |
⊢ ( ( 𝐷 ∈ ℝ ∧ ( 𝑇 + 1 ) ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ↔ ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) ) |
49 |
47 44 42 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) ≤ 𝑐 ↔ ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) ) |
50 |
46 49
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝐷 ≤ 𝑐 ∧ ( 𝑇 + 1 ) ≤ 𝑐 ) ) |
51 |
50
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑇 + 1 ) ≤ 𝑐 ) |
52 |
43 44 42 45 51
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 < 𝑐 ) |
53 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑇 ∈ ℝ* ) |
54 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑐 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 𝑇 < 𝑐 ) ) ) |
55 |
53 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑐 ∈ ℝ ∧ 𝑇 < 𝑐 ) ) ) |
56 |
42 52 55
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ ( 𝑇 (,) +∞ ) ) |
57 |
56 1
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝑐 ∈ 𝑆 ) |
58 |
50
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → 𝐷 ≤ 𝑐 ) |
59 |
57 58
|
jca |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) |
61 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → 𝑐 ∈ 𝑆 ) |
62 |
61
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ∈ 𝑆 ) |
63 |
16 62
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ∈ ℝ ) |
64 |
63
|
leidd |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑐 ) |
65 |
|
nfv |
⊢ Ⅎ 𝑥 𝑐 ≤ 𝑐 |
66 |
|
nfcv |
⊢ Ⅎ 𝑥 abs |
67 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝐵 |
68 |
66 67
|
nffv |
⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
69 |
|
nfcv |
⊢ Ⅎ 𝑥 < |
70 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑒 |
71 |
68 69 70
|
nfbr |
⊢ Ⅎ 𝑥 ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 |
72 |
65 71
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) |
73 |
|
breq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝑐 ≤ 𝑥 ↔ 𝑐 ≤ 𝑐 ) ) |
74 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑐 → 𝐵 = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
75 |
74
|
fveq2d |
⊢ ( 𝑥 = 𝑐 → ( abs ‘ 𝐵 ) = ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) |
76 |
75
|
breq1d |
⊢ ( 𝑥 = 𝑐 → ( ( abs ‘ 𝐵 ) < 𝑒 ↔ ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) |
77 |
73 76
|
imbi12d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ↔ ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
78 |
72 77
|
rspc |
⊢ ( 𝑐 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
79 |
62 78
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑐 → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) ) |
80 |
64 79
|
mpid |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ) ) |
81 |
17 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
82 |
81
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlimge0 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |
84 |
|
elrege0 |
⊢ ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
85 |
82 83 84
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 𝐵 ∈ ( 0 [,) +∞ ) ) |
86 |
85
|
expr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
87 |
86
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
88 |
87
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
89 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → 𝐷 ≤ 𝑐 ) |
90 |
89
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐷 ≤ 𝑐 ) |
91 |
|
nfv |
⊢ Ⅎ 𝑥 𝐷 ≤ 𝑐 |
92 |
67
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) |
93 |
91 92
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
94 |
|
breq2 |
⊢ ( 𝑥 = 𝑐 → ( 𝐷 ≤ 𝑥 ↔ 𝐷 ≤ 𝑐 ) ) |
95 |
74
|
eleq1d |
⊢ ( 𝑥 = 𝑐 → ( 𝐵 ∈ ( 0 [,) +∞ ) ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) |
96 |
94 95
|
imbi12d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) ↔ ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
97 |
93 96
|
rspc |
⊢ ( 𝑐 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( 𝐷 ≤ 𝑥 → 𝐵 ∈ ( 0 [,) +∞ ) ) → ( 𝐷 ≤ 𝑐 → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) ) ) |
98 |
62 88 90 97
|
syl3c |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ) |
99 |
|
elrege0 |
⊢ ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ( 0 [,) +∞ ) ↔ ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) |
100 |
98 99
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) ) |
101 |
|
absid |
⊢ ( ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 0 ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
102 |
100 101
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) = ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
103 |
102
|
breq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 ↔ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) ) |
104 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑀 ∈ ℤ ) |
105 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐷 ∈ ℝ ) |
106 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
107 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑇 ∈ ℝ ) |
108 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
109 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
110 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
111 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
112 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
113 |
112
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
114 |
|
3simpa |
⊢ ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) → ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) |
115 |
114 12
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
116 |
115
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
117 |
83
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
118 |
117
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
119 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ 𝑆 ) |
120 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑐 ≤ 𝑦 ) |
121 |
16 23
|
sstri |
⊢ 𝑆 ⊆ ℝ* |
122 |
121 119
|
sselid |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) |
123 |
|
pnfge |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) |
124 |
122 123
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑦 ≤ +∞ ) |
125 |
1 2 104 105 106 107 108 109 110 111 11 113 116 13 118 62 119 90 120 124
|
dvfsumlem4 |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) |
126 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝐺 : 𝑆 ⟶ ℂ ) |
127 |
126 119
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
128 |
126 62
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( 𝐺 ‘ 𝑐 ) ∈ ℂ ) |
129 |
127 128
|
subcld |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ∈ ℂ ) |
130 |
129
|
abscld |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ∈ ℝ ) |
131 |
100
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
132 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑒 ∈ ℝ+ ) |
133 |
132
|
rpred |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → 𝑒 ∈ ℝ ) |
134 |
|
lelttr |
⊢ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ∈ ℝ ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∈ ℝ ∧ 𝑒 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
135 |
130 131 133 134
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) ≤ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ∧ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
136 |
125 135
|
mpand |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ⦋ 𝑐 / 𝑥 ⦌ 𝐵 < 𝑒 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
137 |
103 136
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ( abs ‘ ⦋ 𝑐 / 𝑥 ⦌ 𝐵 ) < 𝑒 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
138 |
80 137
|
syld |
⊢ ( ( 𝜑 ∧ ( ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
139 |
138
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑐 ≤ 𝑦 ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
140 |
139
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑐 ≤ 𝑦 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
141 |
140
|
com23 |
⊢ ( ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) ∧ 𝑦 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
142 |
141
|
ralrimdva |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
143 |
142 61
|
jctild |
⊢ ( ( 𝜑 ∧ ( 𝑒 ∈ ℝ+ ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
144 |
143
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ ( 𝑐 ∈ 𝑆 ∧ 𝐷 ≤ 𝑐 ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
145 |
60 144
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
146 |
145
|
expimpd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ( 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∧ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) ) → ( 𝑐 ∈ 𝑆 ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) ) |
147 |
146
|
reximdv2 |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ( if ( 𝐷 ≤ ( 𝑇 + 1 ) , ( 𝑇 + 1 ) , 𝐷 ) [,) +∞ ) ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
148 |
39 147
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ℝ+ ) → ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
149 |
148
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝑆 ( 𝑐 ≤ 𝑥 → ( abs ‘ 𝐵 ) < 𝑒 ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) ) |
150 |
32 149
|
mpd |
⊢ ( 𝜑 → ∀ 𝑒 ∈ ℝ+ ∃ 𝑐 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑐 ≤ 𝑦 → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑐 ) ) ) < 𝑒 ) ) |
151 |
17 21 28 150
|
caucvgr |
⊢ ( 𝜑 → 𝐺 ∈ dom ⇝𝑟 ) |