Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
⊢ 𝑆 = ( 𝑇 (,) +∞ ) |
2 |
|
dvfsum.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
3 |
|
dvfsum.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
4 |
|
dvfsum.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
|
dvfsum.md |
⊢ ( 𝜑 → 𝑀 ≤ ( 𝐷 + 1 ) ) |
6 |
|
dvfsum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
7 |
|
dvfsum.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
8 |
|
dvfsum.b1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
9 |
|
dvfsum.b2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
10 |
|
dvfsum.b3 |
⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
11 |
|
dvfsum.c |
⊢ ( 𝑥 = 𝑘 → 𝐵 = 𝐶 ) |
12 |
|
dvfsumrlim.l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) → 𝐶 ≤ 𝐵 ) |
13 |
|
dvfsumrlim.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ) |
14 |
|
dvfsumrlim.k |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ⇝𝑟 0 ) |
15 |
|
dvfsumrlim2.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
16 |
|
dvfsumrlim2.2 |
⊢ ( 𝜑 → 𝐷 ≤ 𝑋 ) |
17 |
|
ioossre |
⊢ ( 𝑇 (,) +∞ ) ⊆ ℝ |
18 |
1 17
|
eqsstri |
⊢ 𝑆 ⊆ ℝ |
19 |
18 15
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
20 |
19
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
21 |
19
|
renepnfd |
⊢ ( 𝜑 → 𝑋 ≠ +∞ ) |
22 |
|
icopnfsup |
⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑋 ≠ +∞ ) → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) |
23 |
20 21 22
|
syl2anc |
⊢ ( 𝜑 → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → sup ( ( 𝑋 [,) +∞ ) , ℝ* , < ) = +∞ ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℝ ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐺 : 𝑆 ⟶ ℝ ) |
27 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ∈ 𝑆 ) |
28 |
26 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
30 |
6
|
rexrd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ* ) |
31 |
15 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 (,) +∞ ) ) |
32 |
|
elioopnf |
⊢ ( 𝑇 ∈ ℝ* → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
33 |
30 32
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 (,) +∞ ) ↔ ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) ) |
34 |
31 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ ∧ 𝑇 < 𝑋 ) ) |
35 |
34
|
simprd |
⊢ ( 𝜑 → 𝑇 < 𝑋 ) |
36 |
|
df-ioo |
⊢ (,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 < 𝑤 ∧ 𝑤 < 𝑣 ) } ) |
37 |
|
df-ico |
⊢ [,) = ( 𝑢 ∈ ℝ* , 𝑣 ∈ ℝ* ↦ { 𝑤 ∈ ℝ* ∣ ( 𝑢 ≤ 𝑤 ∧ 𝑤 < 𝑣 ) } ) |
38 |
|
xrltletr |
⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑋 ∈ ℝ* ∧ 𝑧 ∈ ℝ* ) → ( ( 𝑇 < 𝑋 ∧ 𝑋 ≤ 𝑧 ) → 𝑇 < 𝑧 ) ) |
39 |
36 37 38
|
ixxss1 |
⊢ ( ( 𝑇 ∈ ℝ* ∧ 𝑇 < 𝑋 ) → ( 𝑋 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
40 |
30 35 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ ( 𝑇 (,) +∞ ) ) |
41 |
40 1
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ 𝑆 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑋 [,) +∞ ) ⊆ 𝑆 ) |
43 |
42
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ 𝑆 ) |
44 |
26 43
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℝ ) |
45 |
44
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ℂ ) |
46 |
29 45
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ∈ ℂ ) |
47 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
48 |
|
icossre |
⊢ ( ( 𝑋 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑋 [,) +∞ ) ⊆ ℝ ) |
49 |
19 47 48
|
sylancl |
⊢ ( 𝜑 → ( 𝑋 [,) +∞ ) ⊆ ℝ ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑋 [,) +∞ ) ⊆ ℝ ) |
51 |
|
rlimf |
⊢ ( 𝐺 ⇝𝑟 𝐿 → 𝐺 : dom 𝐺 ⟶ ℂ ) |
52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 : dom 𝐺 ⟶ ℂ ) |
53 |
|
ovex |
⊢ ( Σ 𝑘 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑥 ) ) 𝐶 − 𝐴 ) ∈ V |
54 |
53 13
|
dmmpti |
⊢ dom 𝐺 = 𝑆 |
55 |
54
|
feq2i |
⊢ ( 𝐺 : dom 𝐺 ⟶ ℂ ↔ 𝐺 : 𝑆 ⟶ ℂ ) |
56 |
52 55
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
57 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝑋 ∈ 𝑆 ) |
58 |
56 57
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) |
59 |
|
rlimconst |
⊢ ( ( ( 𝑋 [,) +∞ ) ⊆ ℝ ∧ ( 𝐺 ‘ 𝑋 ) ∈ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑋 ) ) ⇝𝑟 ( 𝐺 ‘ 𝑋 ) ) |
60 |
50 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑋 ) ) ⇝𝑟 ( 𝐺 ‘ 𝑋 ) ) |
61 |
56
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 = ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑦 ) ) ) |
62 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → 𝐺 ⇝𝑟 𝐿 ) |
63 |
61 62
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑦 ) ) ⇝𝑟 𝐿 ) |
64 |
42 63
|
rlimres2 |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( 𝐺 ‘ 𝑦 ) ) ⇝𝑟 𝐿 ) |
65 |
29 45 60 64
|
rlimsub |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ⇝𝑟 ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) |
66 |
46 65
|
rlimabs |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ) ⇝𝑟 ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ) |
67 |
18
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ ℝ ) |
68 |
67 7 8 10
|
dvmptrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ ℝ ) |
69 |
68
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ ) |
70 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 |
71 |
70
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ |
72 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑋 → 𝐵 = ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
73 |
72
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐵 ∈ ℝ ↔ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
74 |
71 73
|
rspc |
⊢ ( 𝑋 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 𝐵 ∈ ℝ → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) ) |
75 |
15 69 74
|
sylc |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
76 |
75
|
recnd |
⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) |
77 |
|
rlimconst |
⊢ ( ( ( 𝑋 [,) +∞ ) ⊆ ℝ ∧ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℂ ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
78 |
49 76 77
|
syl2anc |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↦ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) ⇝𝑟 ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
80 |
46
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ∈ ℝ ) |
81 |
75
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ∈ ℝ ) |
82 |
29 45
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ) |
83 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑀 ∈ ℤ ) |
84 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐷 ∈ ℝ ) |
85 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑀 ≤ ( 𝐷 + 1 ) ) |
86 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑇 ∈ ℝ ) |
87 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ℝ ) |
88 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐵 ∈ 𝑉 ) |
89 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ 𝑥 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) |
90 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( ℝ D ( 𝑥 ∈ 𝑆 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑆 ↦ 𝐵 ) ) |
91 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
92 |
|
3simpa |
⊢ ( ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) → ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ) ) |
93 |
92 12
|
syl3an3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
94 |
93
|
3adant1r |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑘 ∈ 𝑆 ) ∧ ( 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ 𝑘 ∧ 𝑘 ≤ +∞ ) ) → 𝐶 ≤ 𝐵 ) |
95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlimge0 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ) ) → 0 ≤ 𝐵 ) |
96 |
95
|
3adantr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
97 |
96
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝐷 ≤ 𝑥 ∧ 𝑥 ≤ +∞ ) ) → 0 ≤ 𝐵 ) |
98 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ∈ 𝑆 ) |
99 |
41
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ 𝑆 ) |
100 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝐷 ≤ 𝑋 ) |
101 |
|
elicopnf |
⊢ ( 𝑋 ∈ ℝ → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ) ) ) |
102 |
19 101
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ ( 𝑋 [,) +∞ ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑋 ≤ 𝑦 ) ) ) |
103 |
102
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑋 ≤ 𝑦 ) |
104 |
102
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
105 |
104
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ∈ ℝ* ) |
106 |
|
pnfge |
⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) |
107 |
105 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → 𝑦 ≤ +∞ ) |
108 |
1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107
|
dvfsumlem4 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
109 |
108
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑦 ) − ( 𝐺 ‘ 𝑋 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
110 |
82 109
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) ∧ 𝑦 ∈ ( 𝑋 [,) +∞ ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − ( 𝐺 ‘ 𝑦 ) ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |
111 |
24 66 79 80 81 110
|
rlimle |
⊢ ( ( 𝜑 ∧ 𝐺 ⇝𝑟 𝐿 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) − 𝐿 ) ) ≤ ⦋ 𝑋 / 𝑥 ⦌ 𝐵 ) |